OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope

Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14316-14330 (2013)
http://dx.doi.org/10.1364/OE.21.014316


View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a computational model for modeling an aplanatic solid immersion lens scanning microscope. The scanning microscope model consists of three subsystems, each of which can be computed as a separate system, connected to the preceding or succeeding subsystem through the input/output only. Numerical techniques are used to enhance the computational efficiency of each subsystem. A distinct merit of the proposed model is that it can be used to simulate imaging results for diverse setups of the scanning microscope, like various polarizations, numerical aperture, and different detector pinhole sizes. It allows the study and analysis of both theoretical aspects like achievable resolution, and practical aspects like expected images for different object patterns and experimental setups. Further, due to its computational efficiency, diverse large scale structures can be easily simulated in scanning microscope and good experimental approaches determined before indulging into the time consuming and costly process of experimentation.

© 2013 OSA

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(180.5810) Microscopy : Scanning microscopy
(260.2110) Physical optics : Electromagnetic optics
(110.1758) Imaging systems : Computational imaging
(290.5855) Scattering : Scattering, polarization

ToC Category:
Microscopy

History
Original Manuscript: February 8, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: May 28, 2013
Published: June 10, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Rui Chen, Krishna Agarwal, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen, "A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope," Opt. Express 21, 14316-14330 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-12-14316


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57, 2615–2616 (1990). [CrossRef]
  2. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE88, 1491–1498 (2000). [CrossRef]
  3. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78, 4071–4073 (2001). [CrossRef]
  4. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16, 9501–9506 (2008). [CrossRef] [PubMed]
  5. Semicaps, “Optical fault localization system,” http://www.semicaps.com/innovations.htm (2011).
  6. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72, 2779–2781 (1998). [CrossRef]
  7. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77, 2109–2111 (2000). [CrossRef]
  8. A. N. Vamivakas, R. D. Younger, B. B. Goldberg, A. K. Swan, M. S. Ünlü, E. R. Behringer, and S. B. Ippolito, “A case study for optics: The solid immersion microscope,” Am. J. Phys.76, 758–768 (2008). [CrossRef]
  9. F. H. Köklü and M. S. Ünlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett.35, 184–186 (2010). [CrossRef] [PubMed]
  10. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282, 1036–1041 (2009). [CrossRef]
  11. K. M. Lim, G. C. F. Lee, C. J. R. Sheppard, J. C. H. Phang, C. L. Wong, and X. Chen, “Effect of polarization on a solid immersion lens of arbitrary thickness,” J. Opt. Soc. Am. A28, 903–911 (2011). [CrossRef]
  12. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Multipole theory for tight focusing of polarized light, including radially polarized and other special cases,” J. Opt. Soc. Am. A29, 32–43 (2012). [CrossRef]
  13. R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A29, 2350–2359 (2012). [CrossRef]
  14. C. J. R. Sheppard and A. Choudhury, “Image formation in scanning microscope,” Opt. Acta24, 1051–1073 (1977). [CrossRef]
  15. C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta25, 315–325 (1978). [CrossRef]
  16. C. J. R. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc.-Oxf.124, 107–117 (1981). [CrossRef]
  17. G. J. Brakenhoff, P. Blom, and P. Barends, “Confocal scanning light-microscopy with high aperture immersion lenses,” J. Microsc.-Oxf.117, 219–232 (1979). [CrossRef]
  18. T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–313 (1997). [CrossRef]
  19. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt.45, 1681–1698 (1998). [CrossRef]
  20. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express16, 507–523 (2008). [CrossRef] [PubMed]
  21. R. L. Coe and E. J. Seibel, “Computational modeling of optical projection tomographic microscopy using the finite difference time domain method,” J. Opt. Soc. Am. A29, 2696–2707 (2012). [CrossRef]
  22. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express14, 11277–11291 (2006). [CrossRef] [PubMed]
  23. L. Hu, R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express19, 19280–19295 (2011). [CrossRef] [PubMed]
  24. Y. Zhong and X. Chen, “An FFT twofold subspace-based optimization method for solving electromagnetic inverse scattering problems,” IEEE Trans. Antennas Propag.59, 914–927 (2011). [CrossRef]
  25. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Resolution of aplanatic solid immersion lens based microscopy,” J. Opt. Soc. Am. A29, 1059–1070 (2012). [CrossRef]
  26. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,”J. Opt. Soc. Am.54, 240–242 (1964). [CrossRef]
  27. J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodriguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett.36, 1341–1343 (2011). [CrossRef] [PubMed]
  28. C. J. R. Sheppard and K. G. Larkin, “Vectorial pupil functions and vectorial transfer functions,” Optik107, 79–87 (1997).
  29. J. Lin, O. G. Rodriguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty, “Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional fourier transform,” Opt. Express20, 1060–1069 (2012). [CrossRef] [PubMed]
  30. L. Rabiner, R. Schafer, and C. Rader, “The chirp z-transform algorithm,” IEEE Trans. Acoust. Speech17, 86–92 (1969).
  31. A. Oppenheim, R. Schafer, and J. Buck, Discrete-Time Signal Processing, 2nd ed (Prentice Hall, 1999).
  32. http://www.tedpella.com/metrochip_html/metrochip-calibration-target.htm .
  33. http://www.2spi.com/catalog/magnifiers/magnification-standard-geller-MRS-5.php .
  34. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy, vol. 1 (London: Academic Press, 1984).
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  36. K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Experimental validation of the computational model of aplanatic solid immersion lens scanning microscope,” presented at Focus on microscopy 2013, Maastricht, The Netherlands, 24–27 Mar. 2013

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited