OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope

Tomáš Slabý, Pavel Kolman, Zbyněk Dostál, Martin Antoš, Martin Lošťák, and Radim Chmelík  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14747-14762 (2013)
http://dx.doi.org/10.1364/OE.21.014747


View Full Text Article

Enhanced HTML    Acrobat PDF (3954 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherence-controlled holographic microscope (CCHM) combines off-axis holography and an achromatic grating interferometer allowing for the use of light sources of arbitrary degree of temporal and spatial coherence. This results in coherence gating and strong suppression of coherent noise and parasitic interferences enabling CCHM to reach high phase measurement accuracy and imaging quality. The achievable lateral resolution reaches performance of conventional widefield microscopes, which allows resolving up to twice smaller details when compared to typical off-axis setups. Imaging characteristics can be controlled arbitrarily by coherence between two extremes: fully coherent holography and confocal-like incoherent holography. The basic setup parameters are derived and described in detail and experimental validations of imaging characteristics are demonstrated.

© 2013 OSA

OCIS Codes
(090.0090) Holography : Holography
(110.4980) Imaging systems : Partial coherence in imaging
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.3170) Microscopy : Interference microscopy
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Microscopy

History
Original Manuscript: December 5, 2012
Revised Manuscript: February 3, 2013
Manuscript Accepted: May 2, 2013
Published: June 13, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Tomáš Slabý, Pavel Kolman, Zbyněk Dostál, Martin Antoš, Martin Lošťák, and Radim Chmelík, "Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope," Opt. Express 21, 14747-14762 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-12-14747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Barer, “Interference microscopy and mass determination,” Nature169(4296), 366–367 (1952). [CrossRef] [PubMed]
  2. H. G. Davies and M. H. F. Wilkins, “Interference microscopy and mass determination,” Nature169(4300), 541 (1952). [CrossRef] [PubMed]
  3. H. Janečková, P. Veselý, and R. Chmelík, “Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy,” Anticancer Res.29(6), 2339–2345 (2009). [PubMed]
  4. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt.11(5), 054032 (2006). [CrossRef] [PubMed]
  5. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999). [CrossRef] [PubMed]
  6. L. Lovicar, L. Kvasnica, and R. Chmelík, “Surface observation and measurement by means of digital holographic microscope with arbitrary degree of coherence,” Proc. SPIE7141, 71411S (2008). [CrossRef]
  7. L. Lovicar, J. Komrska, and R. Chmelík, “Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process,” Opt. Express18(20), 20585–20594 (2010). [CrossRef] [PubMed]
  8. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010). [CrossRef] [PubMed]
  9. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt.38(34), 7085–7094 (1999). [CrossRef] [PubMed]
  10. P. Klysubun and G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A18(2), 326–331 (2001). [CrossRef] [PubMed]
  11. G. Indebetouw and P. Klysubun, “Optical sectioning with low coherence spatio-temporal holography,” Opt. Commun.172(1-6), 25–29 (1999). [CrossRef]
  12. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett.25(4), 212–214 (2000). [CrossRef] [PubMed]
  13. E. N. Leith, W.-C. Chien, K. D. Mills, B. D. Athey, and D. S. Dilworth, “Optical sectioning by holographic coherence imaging: a generalized analysis,” J. Opt. Soc. Am. A20(2), 380–387 (2003). [CrossRef] [PubMed]
  14. M.-K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7(9), 305–310 (2000). [CrossRef] [PubMed]
  15. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt.44(10), 1806–1812 (2005). [CrossRef] [PubMed]
  16. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4(9), 717–719 (2007). [CrossRef] [PubMed]
  17. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett.23(15), 1221–1223 (1998). [CrossRef] [PubMed]
  18. L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng.39(12), 3214–3219 (2000). [CrossRef]
  19. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt.43(36), 6536–6544 (2004). [CrossRef] [PubMed]
  20. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett.35(23), 4066–4068 (2010). [CrossRef] [PubMed]
  21. P. Girshovitz and N. T. Shaked, “Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization,” Biomed. Opt. Express3(8), 1757–1773 (2012). [CrossRef] [PubMed]
  22. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett.37(6), 1094–1096 (2012). [CrossRef] [PubMed]
  23. F. Dubois and C. Yourassowsky, “Full off-axis red-green-blue digital holographic microscope with LED illumination,” Opt. Lett.37(12), 2190–2192 (2012). [CrossRef] [PubMed]
  24. R. Chmelík and Z. Harna, “Parallel-mode confocal microscope,” Opt. Eng.38(10), 1635–1639 (1999). [CrossRef]
  25. R. Chmelík, “Three-dimensional scalar imaging in high-aperture low-coherence interference and holographic microscopes,” J. Mod. Opt.53(18), 2673–2689 (2006). [CrossRef]
  26. H. Janečková, P. Kolman, P. Veselý, and R. Chmelík, “Digital holographic microscope with low spatial and temporal coherence of illumination,” Proc. SPIE7000, 70002E (2008). [CrossRef]
  27. R. Chmelík and Z. Harna, “Surface profilometry by a parallel–mode confocal microscope,” Opt. Eng.41(4), 744–745 (2002). [CrossRef]
  28. P. Kolman and R. Chmelík, “Coherence-controlled holographic microscope,” Opt. Express18(21), 21990–22003 (2010). [CrossRef] [PubMed]
  29. M. Lošťák, P. Kolman, Z. Dostál, and R. Chmelík, “Diffuse light imaging with a coherence controlled holographic microscope,” Proc. SPIE7746, 77461N (2010). [CrossRef]
  30. E. N. Leith and J. Upatnieks, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am.57(8), 975–980 (1967). [CrossRef]
  31. T. Slabý, M. Antoš, Z. Dostál, P. Kolman, and R. Chmelík, “Coherence-controlled holographic microscope,” Proc. SPIE7746, 77461R (2010). [CrossRef]
  32. N. Pavillon, A. Benke, D. Boss, C. Moratal, J. Kühn, P. Jourdain, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy,” J Biophotonics3(7), 432–436 (2010). [CrossRef] [PubMed]
  33. B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J Biophotonics3(7), 425–431 (2010). [CrossRef] [PubMed]
  34. E. Shaffer, N. Pavillon, and C. Depeursinge, “Single-shot, simultaneous incoherent and holographic microscopy,” J. Microsc.245(1), 49–62 (2012). [CrossRef] [PubMed]
  35. M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1986).
  36. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 65, Chap. 4.
  37. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt.48(34), H186–H195 (2009). [CrossRef] [PubMed]
  38. T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” J. Opt. Soc. Am. A3(6), 847–855 (1986). [CrossRef]
  39. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol.19(7), 074007 (2008). [CrossRef]
  40. R. Chmelík, “Holographic confocal microscopy,” Proc. SPIE4356, 118–123 (2001). [CrossRef]
  41. E. N. Leith and G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt.20(17), 3081–3084 (1981). [CrossRef] [PubMed]
  42. R. Chmelík, P. Kolman, T. Slabý, M. Antoš, and Z. Dostál, “Interferometric system with spatial carrier frequency capable of imaging in polychromatic radiation,” patent EP2378244B1 (July 4, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited