OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Vectorial design of super-oscillatory lens

Tao Liu, Jiubin Tan, Jian Liu, and Hongting Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 13, pp. 15090-15101 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1736 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A design and optimization method based on vectorial angular spectrum theory is proposed in this paper for the vectorial design of a super-oscillatory lens (SOL), so that the radially polarized vector beam can be tightly focused. The structure of a SOL is optimized using genetic algorithm and the computational process is accelerated using fast Hankel transform algorithm. The optimized results agree well with what is obtained using the vectorial Rayleigh-Sommerfeld diffraction integral. For an oil immersed SOL, a subwavelength focal spot of about 0.25 illumination wavelength without any significant side lobe can be created at a distance of 184.86μm away from a large SOL with a diameter of 1mm. The proposed vectorial design method can be used to efficiently design a SOL of arbitrary size illuminated by various vector beams, with the subwavelength hotspot located in a post-evanescent observation plane.

© 2013 OSA

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1940) Diffraction and gratings : Diffraction
(100.6640) Image processing : Superresolution
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: March 19, 2013
Revised Manuscript: May 21, 2013
Manuscript Accepted: May 28, 2013
Published: June 17, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Tao Liu, Jiubin Tan, Jian Liu, and Hongting Wang, "Vectorial design of super-oscillatory lens," Opt. Express 21, 15090-15101 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. D. Francia, “Super-gain antennas and optical resolving power,” Nuovo Cim.9(Suppl.), 426–438 (1952).
  2. M. Martinez-Corral, P. Andres, C. J. Zapata-Rodriguez, and M. Kowalczyk, “Three-dimensional superresolution by annular binary filters,” Opt. Commun.165(4-6), 267–278 (1999).
  3. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics2(8), 501–505 (2008). [CrossRef]
  4. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am.72(9), 1287–1291 (1982). [CrossRef]
  5. Z. S. Hegedus and V. Sarafis, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A3(11), 704–716 (1986). [CrossRef]
  6. D. Mugnai, A. Ranfagni, and R. Ruggeri, “Pupils with super-resolution,” Phys. Lett. A311(2-3), 77–81 (2003). [CrossRef]
  7. R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Circularly symmetric apodization via starshaped masks,” Astrophys. J.599(1), 686–694 (2003). [CrossRef]
  8. J. Liu, J. Tan, and Y. Wang, “Synthetic complex superresolving pupil filter based on double-beam phase modulation,” Appl. Opt.47(21), 3803–3807 (2008). [CrossRef] [PubMed]
  9. T. Wilson and S. J. Hewlett, “Superresolution in confocal scanning microscopy,” Opt. Lett.16(14), 1062–1064 (1991). [CrossRef] [PubMed]
  10. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012). [CrossRef] [PubMed]
  11. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett.9(3), 1249–1254 (2009). [CrossRef] [PubMed]
  12. F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanoscale array,” Appl. Phys. Lett.90(9), 091119 (2007). [CrossRef]
  13. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. Math. Gen.39(22), 6965–6977 (2006). [CrossRef]
  14. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  15. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  16. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  17. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  18. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic systems,” Proc. R. Soc. Lond. A Math. Phys. Sci.253(1274), 358–379 (1959). [CrossRef]
  19. P. Varga and P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. II. Numerical results,” J. Opt. Soc. Am. A17(11), 2090–2095 (2000). [CrossRef] [PubMed]
  20. R. G. Mote, S. F. Yu, W. Zhou, and Z. F. Li, “Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states,” Appl. Phys. Lett.95(19), 191113 (2009). [CrossRef]
  21. V. V. Kotlyar, S. S. Stafeev, Y. Liu, L. O’Faolain, and A. A. Kovalev, “Analysis of the shape of a subwavelength focal spot for the linearly polarized light,” Appl. Opt.52(3), 330–339 (2013). [CrossRef] [PubMed]
  22. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express7(2), 77–87 (2000). [CrossRef] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  24. D. Deng and Q. Guo, “Analytical vectorial structure of radially polarized light beams,” Opt. Lett.32(18), 2711–2713 (2007). [CrossRef] [PubMed]
  25. W. H. Carter, “Electromagnetic field of a Gaussian beam with an elliptical cross section,” J. Opt. Soc. Am.62(10), 1195–1201 (1972). [CrossRef]
  26. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, first ed., Addison-Wesley Professional, Boston, 1989.
  27. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett.1(1), 13–15 (1977). [CrossRef] [PubMed]
  28. R. K. Luneburg, Mathematical theory of optics, University of California Press, Berkeley, 1966.
  29. J. Li, S. Zhu, and B. Lu, “The rigorous electromagnetic theory of the diffraction of vector beams by a circular aperture,” Opt. Commun.282(23), 4475–4480 (2009). [CrossRef]
  30. V. P. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett.32(24), 3540–3542 (2007). [CrossRef] [PubMed]
  31. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett.32(8), 976–978 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited