OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam

Huayong Zhang, Zhixiang Huang, and Yuan Shi  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15645-15653 (2013)
http://dx.doi.org/10.1364/OE.21.015645


View Full Text Article

Enhanced HTML    Acrobat PDF (871 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the generalized Lorenz-Mie theory (GLMT) framework, an analytical solution to the scattering by a uniaxial anisotropic cylinder, for oblique incidence of an on-axis Gaussian beam, is constructed by expanding the incident Gaussian beam, scattered fields as well as internal fields in terms of appropriate cylindrical vector wave functions (CVWFs). The unknown expansion coefficients are determined by virtue of the boundary conditions. For a localized beam model, numerical results are provided for the normalized internal and near-surface field intensity distributions, and the scattering characteristics are discussed concisely.

© 2013 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:
Physical Optics

History
Original Manuscript: May 13, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 14, 2013
Published: June 21, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Huayong Zhang, Zhixiang Huang, and Yuan Shi, "Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam," Opt. Express 21, 15645-15653 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-13-15645


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D.  Graglia, P. L. E.  Uslenghi, R. S.  Zich, “Moment method with isoparametric elements for three-dimensional anisotropic scatterers,” Proc. IEEE 77(5), 750–760 (1989). [CrossRef]
  2. V. V.  Varadan, A.  Lakhtakia, V. K.  Varadan, “Scattering by three-dimensional anisotropic scatterers,” IEEE Trans. Antenn. Propag. 37(6), 800–802 (1989). [CrossRef]
  3. S. N.  Papadakis, N. K.  Uzunoglu, C. N.  Capsalis, “Scattering of a plane wave by a general anisotropic dielectric ellipsoid,” J. Opt. Soc. Am. A 7(6), 991–997 (1990). [CrossRef]
  4. C. M.  Rappaport, B. J.  McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antenn. Propag. 39(3), 345–349 (1991). [CrossRef]
  5. W.  Ren, “Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(1), 664–673 (1993). [CrossRef] [PubMed]
  6. X. B.  Wu, K.  Yasumoto, “Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder: An analytical solution,” J. Appl. Phys. 82(5), 1996–2003 (1997). [CrossRef]
  7. Y. L.  Geng, X. B.  Wu, L. W.  Li, B. R.  Guan, “Mie scattering by a uniaxial anisotropic sphere,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(5), 056609 (2004). [CrossRef] [PubMed]
  8. Y. L.  Geng, C. W.  Qiu, N.  Yuan, “Exact solution to electromagnetic scattering by an impedance sphere coated with a uniaxial anisotropic layer,” IEEE Trans. Antenn. Propag. 57(2), 572–576 (2009). [CrossRef]
  9. Y. L.  Geng, C. W.  Qiu, “Extended Mie theory for a gyrotropic-coated conducting sphere: An analytical approach,” IEEE Trans. Antenn. Propag. 59(11), 4364–4368 (2011). [CrossRef]
  10. Z. J.  Li, Z. S.  Wu, H. Y.  Li, “Analysis of electromagnetic scattering by uniaxial anisotropic bispheres,” J. Opt. Soc. Am. A 28(2), 118–125 (2011). [CrossRef] [PubMed]
  11. Z. J.  Li, Z. S.  Wu, Y.  Shi, L.  Bai, H.-Y.  Li, “Multiple scattering of electromagnetic waves by an aggregate of uniaxial anisotropic spheres,” J. Opt. Soc. Am. A 29(1), 22–31 (2012). [CrossRef]
  12. Z. S.  Wu, Q. K.  Yuan, Y.  Peng, Z. J.  Li, “Internal and external electromagnetic fields for on-axis Gaussian beam scattering from a uniaxial anisotropic sphere,” J. Opt. Soc. Am. A 26(8), 1778–1787 (2009). [CrossRef] [PubMed]
  13. Q. K.  Yuan, Z. S.  Wu, Z. J.  Li, “Electromagnetic scattering for a uniaxial anisotropic sphere in an off-axis obliquely incident Gaussian beam,” J. Opt. Soc. Am. A 27(6), 1457–1465 (2010). [CrossRef] [PubMed]
  14. G.  Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Optics (Paris) 26(5), 225–239 (1995). [CrossRef]
  15. K. F.  Ren, G.  Gréhan, G.  Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14(11), 3014–3025 (1997). [CrossRef]
  16. J. A.  Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14(3), 640–652 (1997). [CrossRef]
  17. H. Y.  Zhang, Y. P.  Han, G. X.  Han, “Expansion of the electromagnetic fields of a shaped beam in terms of cylindrical vector wave functions,” J. Opt. Soc. Am. B 24(6), 1383–1391 (2007). [CrossRef]
  18. H. Y.  Zhang, Y. P.  Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25(2), 131–135 (2008). [CrossRef]
  19. L. W.  Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19(3), 1177–1179 (1979). [CrossRef]
  20. G.  Gouesbet, “Validity of the localized approximation for arbitrary shaped beam in the generalized Lorenz-Mie theory for spheres,” J. Opt. Soc. Am. A 16(7), 1641–1650 (1999). [CrossRef]
  21. G.  Gouesbet, J. A.  Lock, G.  Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” JQSRT 112(1), 1–27 (2011). [CrossRef]
  22. G.  Gouesbet, G.  Gréhan, K. F.  Ren, “Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz–Mie theory for cylinders,” J. Opt. Soc. Am. A 15(2), 511–523 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited