OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging

Harold Dehez, Michel Piché, and Yves De Koninck  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15912-15925 (2013)
http://dx.doi.org/10.1364/OE.21.015912


View Full Text Article

Enhanced HTML    Acrobat PDF (3106 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser scanning microscopy allows for three-dimensional imaging of cells with molecular specific labeling. However the spatial resolution of optical microscopy is fundamentally limited by the diffraction of light. In the last two decades many techniques have been introduced to enhance the resolution of laser scanning microscopes. However most of these techniques impose strong constraints on the specimen or rely on complex optical systems. These constraints limit the applicability of resolution improvement to various imaging modalities and sample types. To overcome these limitations, we introduce here a novel approach, which we called Switching LAser Mode (SLAM) microscopy, to enhance resolution and contrast in laser scanning microscopy. SLAM microscopy relies on subtracting images obtained with dark and bright modes, and exploits the smaller dimensions of the dark spot of the azimuthally polarized TE01 mode. With this approach, resolution is improved by a factor of two in confocal microscopy. The technique is not based on complex nonlinear processes and thus requires laser power similar to that used in conventional imaging, minimizing photo-damage. The flexibility of the approach enables retrofitting in commercial confocal and two-photon microscopes and opens avenues for resolution enhancement in fluorescence-independent microscopy.

© 2013 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(180.1790) Microscopy : Confocal microscopy
(180.5810) Microscopy : Scanning microscopy
(350.5730) Other areas of optics : Resolution
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 1, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: May 31, 2013
Published: June 25, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Harold Dehez, Michel Piché, and Yves De Koninck, "Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging," Opt. Express 21, 15912-15925 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-13-15912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization,” Science300(5628), 2061–2065 (2003). [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  5. H. Balci, T. Ha, H. L. Sweeney, and P. R. Selvin, “Interhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model,” Biophys. J.89(1), 413–417 (2005). [CrossRef] [PubMed]
  6. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5(5), 417–423 (2008). [CrossRef] [PubMed]
  7. S. A. Jones, S. H. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods8(6), 499–505 (2011). [CrossRef] [PubMed]
  8. L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011). [CrossRef] [PubMed]
  9. R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A.109(14), 5311–5315 (2012). [CrossRef] [PubMed]
  10. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Lührmann, R. Jahn, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.103(31), 11440–11445 (2006). [CrossRef] [PubMed]
  11. R. Kasper, B. Harke, C. Forthmann, P. Tinnefeld, S. W. Hell, and M. Sauer, “Single-molecule STED microscopy with photostable organic fluorophores,” Small6(13), 1379–1384 (2010). [CrossRef] [PubMed]
  12. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods8(7), 571–573 (2011). [CrossRef] [PubMed]
  13. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett.91(23), 233901 (2003). [CrossRef] [PubMed]
  14. J. Kim, D. C. Kim, and S. H. Back, “Demonstration of high lateral resolution in laser confocal microscopy using annular and radially polarized light,” Microsc. Res. Tech.72(6), 441–446 (2009). [CrossRef] [PubMed]
  15. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express19(17), 15947–15954 (2011). [CrossRef] [PubMed]
  16. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett.33(7), 681–683 (2008). [CrossRef] [PubMed]
  17. O. Haeberlé and B. Simon, “Saturated structured confocal microscopy with theoretically unlimited resolution,” Opt. Commun.282(18), 3657–3664 (2009). [CrossRef]
  18. B. R. Boruah, “Lateral resolution enhancement in confocal microscopy by vectorial aperture engineering,” Appl. Opt.49(4), 701–707 (2010). [CrossRef] [PubMed]
  19. S. N. Khonina and I. Golub, “How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy,” J. Opt. Soc. Am. A29(10), 2242–2246 (2012). [CrossRef] [PubMed]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. 2. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
  21. L. Novotny and B. Hecht, Principles of Nano-Optics, (Cambridge University, 2007).
  22. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM01 laser beam at a dielectric interface,” Opt. Lett.34(23), 3601–3603 (2009). [CrossRef] [PubMed]
  23. T. A. Pologruto, B. L. Sabatini, and K. Svoboda, “ScanImage: flexible software for operating laser scanning microscopes,” Biomed. Eng. Online2(1), 13 (2003). [CrossRef] [PubMed]
  24. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006). [CrossRef] [PubMed]
  25. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express17(21), 18419–18432 (2009). [CrossRef] [PubMed]
  26. A. Hudmon, E. Lebel, H. Roy, A. Sik, H. Schulman, M. N. Waxham, and P. De Koninck, “A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association,” J. Neurosci.25(30), 6971–6983 (2005). [CrossRef] [PubMed]
  27. S. Kredel, F. Oswald, K. Nienhaus, K. Deuschle, C. Röcker, M. Wolff, R. Heilker, G. U. Nienhaus, and J. Wiedenmann, “mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures,” PLoS ONE4(2), e4391 (2009). [CrossRef] [PubMed]
  28. A. Diaspro, Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances, (Wiley-Liss, 2002).
  29. C. Labrakakis, L. E. Lorenzo, C. Bories, A. Ribeiro-da-Silva, and Y. De Koninck, “Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn,” Mol. Pain5(1), 24 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited