OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland

Shungudzemwoyo P. Garaba and Oliver Zielinski  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15938-15950 (2013)
http://dx.doi.org/10.1364/OE.21.015938


View Full Text Article

Enhanced HTML    Acrobat PDF (1901 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The need to obtain ocean color essential climate variables (OC-ECVs) using hyperspectral technology has gained increased interest in recent years. Assessing ocean color on a large scale in high latitude environments using satellite remote sensing is constrained by polar environmental conditions. Nevertheless, on a small scale we can assess ocean color using above-water and in-water remote sensing. Unfortunately, above-water remote sensing can only determine apparent optical properties leaving the sea surface and is susceptible to near surface environmental conditions for example sky and sunglint. Consequently, we have to rely on accurate in-water remote sensing as it can provide both synoptic inherent and apparent optical properties of seawater. We use normalized water leaving radiance LWN or the equivalent remote sensing reflectance RRS from 27 stations to compare the differences in above-water and in-water OC-ECVs. Analysis of above-water and in-water RRS spectra provided very good match-ups (R2 > 0.97, MSE<1.8*10−7) for all stations. The unbiased percent differences (UPD) between above-water and in-water approaches were determined at common OC-ECVs spectral bands (410, 440, 490, 510 and 555) nm and the classic band ratio (490/555) nm. The spectral average UPD ranged (5 – 110) % and band ratio UPD ranged (0 – 12) %, the latter showing that the 5% uncertainty threshold for ocean color radiometric products is attainable. UPD analysis of these stations West of Greenland, Labrador Sea, Denmark Strait and West of Iceland also suggests that the differences observed are likely a result of environmental and instrumental perturbations.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Remote Sensing

History
Original Manuscript: April 23, 2013
Revised Manuscript: June 6, 2013
Manuscript Accepted: June 14, 2013
Published: June 26, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Shungudzemwoyo P. Garaba and Oliver Zielinski, "Comparison of remote sensing reflectance from above-water and in-water measurements west of Greenland, Labrador Sea, Denmark Strait, and west of Iceland," Opt. Express 21, 15938-15950 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-13-15938


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Calbet, K. Riisgaard, E. Saiz, S. Zamora, C. Stedmon, and T. Nielsen, “Phytoplankton growth and microzooplankton grazing along a sub-Arctic fjord (Godthabsfjord, west Greenland),” Mar. Ecol. Prog. Ser.442, 11–22 (2011). [CrossRef]
  2. S. Bélanger, J. K. Ehn, and M. Babin, “Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data,” Remote Sens. Environ.111(1), 51–68 (2007). [CrossRef]
  3. H. M. Dierssen and R. C. Smith, “Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters,” J. Geophys. Res.105(C11), 26301–26312 (2000). [CrossRef]
  4. G. Zibordi, J. F. Berthon, F. Mélin, and D. D'Alimonte, “Cross-site consistent in situ measurements for satellite ocean color applications: The BiOMaP radiometric dataset,” Remote Sens. Environ.115(8), 2104–2115 (2011). [CrossRef]
  5. Z. Lee, Y.-H. Ahn, C. Mobley, and R. Arnone, “Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform,” Opt. Express18(25), 26313–26324 (2010). [CrossRef] [PubMed]
  6. S. P. Garaba, J. Schulz, M. R. Wernand, and O. Zielinski, “Sunglint detection for unmanned and automated platforms,” Sensors (Basel)12(9), 12545–12561 (2012). [CrossRef] [PubMed]
  7. T. Suresh, M. Talaulikar, E. Desa, S. G. Prabhu Matondkar, T. S. Kumar, and A. Lotlikar, “A simple method to minimize orientation effects in a profiling radiometer,” Mar. Geod.35(4), 441–454 (2012). [CrossRef]
  8. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Spectral sky radiance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810739 .
  9. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Downward irradiance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810741 .
  10. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Upward radiance radiance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810740 .
  11. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurement and analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, NASA/TM-2003–21621, J. L. Mueller, G. S. Fargion, and C. R. McClain eds. (2003), pp. 21–31.
  12. H. Neckel and D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phys.90(2), 205–258 (1984). [CrossRef]
  13. P. Kowalczuk, M. J. Durako, W. J. Cooper, D. Wells, and J. J. Souza, “Comparison of radiometric quantities measured in water, above water and derived from seaWiFS imagery in the South Atlantic Bight, North Carolina, USA,” Cont. Shelf Res.26(19), 2433–2453 (2006). [CrossRef]
  14. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Normalized water leaving radiance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810858 .
  15. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Water leaving radiance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810857 .
  16. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Remote sensing reflectance during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810742 .
  17. K. G. Ruddick, V. De Cauwer, Y. J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr.51(2), 1167–1179 (2006). [CrossRef]
  18. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38(36), 7442–7455 (1999). [CrossRef] [PubMed]
  19. R. W. Gould, R. A. Arnone, and M. Sydor, “Absorption, scattering, and, remote-sensing reflectance relationships in coastal waters: Testing a new inversion algorithm,” J. Coast. Res.17, 328–341 (2001).
  20. T. Kutser, E. Vahtmäe, B. Paavel, and T. Kauer, “Removing glint effects from field radiometry data measured in optically complex coastal and inland waters,” Remote Sens. Environ.133, 85–89 (2013). [CrossRef]
  21. S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Technol.19(4), 486–515 (2002). [CrossRef]
  22. I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy76(5), 577–589 (2004). [CrossRef]
  23. O. Zielinski, D. Voß, D. Meier, R. Henkel, L. Holinde, S. P. Garaba, and A. Cembella, “Cloud cover observations during Maria S. Merian cruise MSM21/3 (ARCHEMHAB)” (2013), http://doi.pangaea.de/10.1594/PANGAEA.810649 .
  24. Z. Lee, N. Pahlevan, Y.-H. Ahn, S. Greb, and D. O’Donnell, “Robust approach to directly measuring water-leaving radiance in the field,” Appl. Opt.52(8), 1693–1701 (2013). [CrossRef] [PubMed]
  25. A. Morel and L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr.22(4), 709–722 (1977). [CrossRef]
  26. S. Ouillon and A. Petrenko, “Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea,” Opt. Express13(7), 2531–2548 (2005). [CrossRef] [PubMed]
  27. C. D. Mobley, D. Stramski, W. P. Bissett, and E. Boss, “Optical modeling of ocean waters: Is the Case 1 - Case 2 classification still useful?” Oceanography (Wash. D.C.)17(2), 60–67 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited