OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging

Sean Quirin, Darcy S. Peterka, and Rafael Yuste  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 16007-16021 (2013)
http://dx.doi.org/10.1364/OE.21.016007


View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging three-dimensional structures represents a major challenge for conventional microscopies. Here we describe a Spatial Light Modulator (SLM) microscope that can simultaneously address and image multiple targets in three dimensions. A wavefront coding element and computational image processing enables extended depth-of-field imaging. High-resolution, multi-site three-dimensional targeting and sensing is demonstrated in both transparent and scattering media over a depth range of 300-1,000 microns.

© 2013 OSA

OCIS Codes
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(110.1758) Imaging systems : Computational imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Imaging Systems

History
Original Manuscript: April 26, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 13, 2013
Published: June 27, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Sean Quirin, Darcy S. Peterka, and Rafael Yuste, "Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging," Opt. Express 21, 16007-16021 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-13-16007


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste, “The Brain Activity Map Project and the challenge of Functional Connectomics,” Neuron74(6), 970–974 (2012). [CrossRef] [PubMed]
  2. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34(11), 1859–1866 (1995). [CrossRef] [PubMed]
  3. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless two-photon imaging and photostimulation using spatial light modulators,” Front Neural Circuits2, 5 (2008). [CrossRef] [PubMed]
  4. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc.170(3), 229–236 (1993). [CrossRef] [PubMed]
  5. D. Huber, M. Keller, and D. Robert, “3D light scanning macrography,” J. Microsc.203(2), 208–213 (2001). [CrossRef] [PubMed]
  6. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  7. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron57(5), 661–672 (2008). [CrossRef] [PubMed]
  8. W. Göbel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3D laser scanning,” Nat. Methods4(1), 73–79 (2007). [CrossRef] [PubMed]
  9. B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen, “High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision,” Nat. Methods7(5), 399–405 (2010). [CrossRef] [PubMed]
  10. A. Cheng, J. T. Gonçalves, P. Golshani, K. Arisaka, and C. Portera-Cailliau, “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods8(2), 139–142 (2011). [CrossRef] [PubMed]
  11. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods9(2), 201–208 (2012). [CrossRef] [PubMed]
  12. J. W. Y. Lit and R. Tremblay, “Focal depth of a transmitting axicon,” J. Opt. Soc. Am.63(4), 445–449 (1973). [CrossRef]
  13. G. Indebetouw and H. Bai, “Imaging with Fresnel zone pupil masks: extended depth of field,” Appl. Opt.23(23), 4299–4302 (1984). [CrossRef] [PubMed]
  14. H. P. Kao and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position,” Biophys. J.67(3), 1291–1300 (1994). [CrossRef] [PubMed]
  15. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett.26(12), 875–877 (2001). [CrossRef] [PubMed]
  16. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett.31(2), 181–183 (2006). [CrossRef] [PubMed]
  17. S. Bagheri, P. E. X. Silveira, R. Narayanswamy, and D. P. de Farias, “Analytical optical solution of the extension of the depth of field using cubic-phase wavefront coding. Part II. Design and optimization of the cubic phase,” J. Opt. Soc. Am. A25(5), 1064–1074 (2008). [CrossRef] [PubMed]
  18. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science324(5924), 229–232 (2009). [CrossRef] [PubMed]
  19. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010). [CrossRef] [PubMed]
  20. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  21. V. Nikolenko, K. E. Poskanzer, and R. Yuste, “Two-photon photostimulation and imaging of neural circuits,” Nat. Methods4(11), 943–950 (2007). [CrossRef] [PubMed]
  22. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods9(12), 1202–1205 (2012). [CrossRef] [PubMed]
  23. F. Anselmi, C. Ventalon, A. Bègue, D. Ogden, and V. Emiliani, “Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning,” Proc. Natl. Acad. Sci. U.S.A.108(49), 19504–19509 (2011). [CrossRef] [PubMed]
  24. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  25. E. J. Botcherby, R. Juškaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun.281(4), 880–887 (2008). [CrossRef]
  26. W. J. Smith, Modern Optical Engineering, 3rd Ed. (McGraw-Hill, 2000).
  27. G. J. Swanson, “Binary Optics Technology: The theory and design of multi-level diffractive optical elements,” MIT/Lincoln Laboratories Technical Report 854 (1989).
  28. Z. Zhang, G. Lu, and F. Yu, “Simple method for measuring phase modulation in liquid crystal television,” Opt. Eng.33(9), 3018–3022 (1994). [CrossRef]
  29. M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N (2009). [CrossRef]
  30. M. Persson, D. Engström, and M. Goksör, “An algorithm for improved control of trap intensities in holographic optical tweezers,” Proc. SPIE8458, 84582W, 84582W-7 (2012), doi:. [CrossRef]
  31. S. Prasad, V. P. Pauca, R. J. Plemmons, T. C. Torgersen, and J. van der Gracht, “Pupil-phase optimization for extended focus, aberration corrected imaging systems,” Proc. SPIE5559, 335–345 (2004). [CrossRef]
  32. R. Piestun, Y. Y. Schechner, and J. Shamir, “Propagation-invariant wave fields with finite energy,” J. Opt. Soc. Am. A17(2), 294–303 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3590 KB)     
» Media 2: AVI (13604 KB)     
» Media 3: AVI (6718 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited