OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Mapping of phase singularities with spiral phase contrast microscopy

Ruth Steiger, Stefan Bernet, and Monika Ritsch-Marte  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16282-16289 (2013)
http://dx.doi.org/10.1364/OE.21.016282


View Full Text Article

Enhanced HTML    Acrobat PDF (3254 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In spiral phase contrast (SPC) microscopy the edge-enhancement is typically independent of the helicity of the phase vortex filter. Here we show that for layered specimens containing screw-dislocations, as are e.g. present in mica or some crystallized organic substances, the intensity distribution in the filtered image acquires a dependence on the rotational direction of the filter. This allows one to map the distribution of phase singularities in the topography of the sample, by taking the intensity difference between two images recorded with opposite handedness. For the demonstration of this feature in a microscopy set-up, we encode the vortex filter as a binary off-axis hologram displayed on a spatial light modulator (SLM) placed in a Fourier plane. Using a binary grating, the diffraction efficiencies for the plus and minus first diffraction orders are equal, giving rise to two image waves which travel in different directions and are Fourier filtered with opposite helicity. The corresponding two images can be recorded simultaneously in two separate regions of the camera chip. This enables mapping of dislocations in the sample in a single camera exposure, as was demonstrated for various transparent samples.

© 2013 OSA

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(170.0180) Medical optics and biotechnology : Microscopy
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Microscopy

History
Original Manuscript: May 9, 2013
Revised Manuscript: June 19, 2013
Manuscript Accepted: June 24, 2013
Published: July 1, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Ruth Steiger, Stefan Bernet, and Monika Ritsch-Marte, "Mapping of phase singularities with spiral phase contrast microscopy," Opt. Express 21, 16282-16289 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-14-16282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005). [CrossRef] [PubMed]
  2. M. Warber, S. Zwick, M. Hasler, T. Haist, and W. Osten, “SLM-based phase-contrast filtering for single and multiple image acquisition,” Proc. SPIE7442, 74420E-1–74420E-12 (2009). [CrossRef]
  3. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett.25(2), 99–101 (2000). [CrossRef] [PubMed]
  4. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt.43(6), 1360–1367 (2004). [CrossRef] [PubMed]
  5. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006). [CrossRef] [PubMed]
  6. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett.29(21), 2503–2505 (2004). [CrossRef] [PubMed]
  7. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett.26(8), 497–499 (2001). [CrossRef] [PubMed]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  9. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett.22(1), 52–54 (1997). [CrossRef] [PubMed]
  10. I. Moreno, J. A. Davis, B. M. L. Pascoguin, M. J. Mitry, and D. M. Cottrell, “Vortex sensing diffraction gratings,” Opt. Lett.34(19), 2927–2929 (2009). [CrossRef] [PubMed]
  11. Q. Wang, X. W. Sun, and P. Shum, “Generating Doughnut-Shaped Beams with Large Charge Numbers by Use of Liquid-Crystal Spiral Phase Plates,” Appl. Opt.43(11), 2292–2297 (2004). [CrossRef] [PubMed]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure and Applied Optics, 1991).
  13. J. E. Curtis and D. G. Grier, “Structure of Optical Vortices,” Phys. Rev. Lett.90(13), 133901 (2003). [CrossRef] [PubMed]
  14. I. Sunagawa, Crystals: Growth, Morphology, and Perfection (Cambridge University, 2005).
  15. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974). [CrossRef]
  16. E. C. H. Silke and R. S. Barnes, “The observation of dislocations in mica,” Acta Metall.9(6), 558–562 (1961). [CrossRef]
  17. K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth137(3-4), 610–622 (1994). [CrossRef]
  18. J. J. De Yoreo, C. A. Orme, and T. A. Land, “Using atomic force microscopy to investigate solution crystal growth,” in Advances in Crystal Growth Research, Eds: K. Sato, K. Nakajima, and Y. Furukawa361–380, (Elsevier Science 2001), pp. 361–380.
  19. I. Lelidis, C. Blanc, and M. Kléman, “Optical and confocal microscopy observations of screw dislocations in smectic-A liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(5), 051710 (2006). [CrossRef] [PubMed]
  20. Y. Rumala and A. Leanhardt, “Multiple-beam interference in a spiral phase plate,” J. Opt. Soc. Am. B30(3), 615–621 (2013). [CrossRef]
  21. M. Uchida and A. Tonomura, “Generation of electron beams carrying orbital angular momentum,” Nature464(7289), 737–739 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited