OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Improving signal detection in emission optical projection tomography via single source multi-exposure image fusion

Abbas Cheddad, Christoffer Nord, Andreas Hörnblad, Renata Prunskaite-Hyyryläinen, Maria Eriksson, Fredrik Georgsson, Seppo J. Vainio, and Ulf Ahlgren  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16584-16604 (2013)
http://dx.doi.org/10.1364/OE.21.016584


View Full Text Article

Enhanced HTML    Acrobat PDF (28077 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a technique to improve structural data obtained from Optical Projection Tomography (OPT) using Image Fusion (IF) and contrast normalization. This enables the visualization of molecular expression patterns in biological specimens with highly variable contrast values. In the approach, termed IF-OPT, different exposures are fused by assigning weighted contrasts to each. When applied to projection images from mouse organs and digital phantoms our results demonstrate the capability of IF-OPT to reveal high and low signal intensity details in challenging specimens. We further provide measurements to highlight the benefits of the new algorithm in comparison to other similar methods.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 10, 2013
Manuscript Accepted: May 16, 2013
Published: July 2, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Abbas Cheddad, Christoffer Nord, Andreas Hörnblad, Renata Prunskaite-Hyyryläinen, Maria Eriksson, Fredrik Georgsson, Seppo J. Vainio, and Ulf Ahlgren, "Improving signal detection in emission optical projection tomography via single source multi-exposure image fusion," Opt. Express 21, 16584-16604 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-14-16584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296(5567), 541–545 (2002). [CrossRef] [PubMed]
  2. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson/Prentice Hall, 2008).
  3. Z. Zhang and R. S. Blum, “A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application,” Proc. IEEE87(8), 1315–1326 (1999). [CrossRef]
  4. G. Simone, A. Farina, F. C. Morabito, S. B. Serpico, and L. Bruzzone, “Image fusion techniques for remote sensing applications,” Inf. Fusion3(1), 3–15 (2002). [CrossRef]
  5. G. K. Matsopoulos, S. Marshall, and J. N. H. Brunt, “Multiresolution morphological fusion of MR and CT images of the human brain,” IEEE Proc.Vis Image Sign141(3), 137–142 (1994).
  6. S. Cheng, J. He, and Z. Lv, “Medical image of PET/CT weighted fusion based on wavelet transform,” in Proceedings of IEEE Conference on Bioinformatics and Biomedical Engineering, (IEEE, 2008), pp. 2523–2525. [CrossRef]
  7. S. Daneshvar and H. Ghassemian, “MRI and PET image fusion by combining IHS and retina-inspired models,” Inf. Fusion11(2), 114–123 (2010). [CrossRef]
  8. P. Fei, Z. Yu, X. Wang, P. J. Lu, Y. Fu, Z. He, J. Xiong, and Y. Huang, “High dynamic range optical projection tomography (HDR-OPT),” Opt. Express20(8), 8824–8836 (2012). [CrossRef] [PubMed]
  9. A. Vavilin, K. Deb, and K. H. Jo,N. García-Pedrajas, ed., “Fast HDR image generation technique based on exposure blending,” in Proceedings of Trends in Applied Intelligent Systems:23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, N. García-Pedrajas, ed. (Springer, 2010), pp. 379–388. [CrossRef]
  10. A. O. Akyuz and E. Reinhard, “Noise reduction in high dynamic range imaging,” J Vis Commun Image R18(5), 366–376 (2007). [CrossRef]
  11. M. Ghantous, S. Ghosh, and M. Bayoumi, “A gradient-based hybrid image fusion scheme using object extraction,” in Proceedings of IEEE Conference on Image Processing, (IEEE, 2008), pp. 1300–1303. [CrossRef]
  12. Y. Yang, D. S. Park, S. Huang, and N. Rao, “Medical image fusion via an effective wavelet-based approach,” EURASIP J. Adv. Signal Process.2010, 1–14 (2010). [CrossRef]
  13. A. A. Goshtasby, “Fusion of multi-exposure images,” Image Vis. Comput.23(6), 611–618 (2005). [CrossRef]
  14. Z. B. Wang and Y. Ma, “Medical image fusion using m-PCNN,” Inf. Fusion9(2), 176–185 (2008). [CrossRef]
  15. Q. Xiao-Bo, Y. Jing-Wen, X. Hong-Zhi, and Z. Zi-Qian, “Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain,” Acta Automatica Sinica34, 1508–1514 (2008).
  16. N. Mitianoudis and T. Stathaki, “Pixel-based and region-based image fusion schemes using ICA bases,” Inf. Fusion8(2), 131–142 (2007). [CrossRef]
  17. T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion: a simple and practical alternative to high dynamic range photograph,” Comput. Graph. Forum28(1), 161–171 (2009). [CrossRef]
  18. A. Toet, “Hierarchical image fusion,” Mach. Vis. Appl.3(1), 1–11 (1990). [CrossRef]
  19. P. J. Burt and R. J. Kolczynski, “Enhanced image capture through fusion,” in Proceedings of IEEE Conference on Computer Vision. (IEEE, 1993), pp. 173–182.
  20. L. J. Chipman, T. M. Orr, and L. N. Graham, “Wavelets and image fusion,” in Proceedings of IEEE Conference on Image Processing. (IEEE, 1995), pp. 248–251. [CrossRef]
  21. L. Hui, B. S. Manjunath, and S. K. Mitra, “Multi-sensor image fusion using the wavelet transform,” in Proceedings of IEEE Conference on Image Processing, (IEEE, 1994), pp. 51–55. [CrossRef]
  22. J. J. Lewis, R. J. O'Callaghan, S. G. Nikolov, D. R. Bull, and C. N. Canagarajah, “Pixel- and region-based image fusion with complex wavelets,” Inf. Fusion8(2), 119–130 (2007). [CrossRef]
  23. S. Nikolov, P. Hill, D. Bull, and N. C. Jah, “Wavelets for image fusion,” in Wavelets in Signal and Image Analysis: From Theory to Practice, A. A. Petrosian and F. G. Meyer, eds. (Springer, 2001), pp. 213–244.
  24. D. Looney and D. P. Mandic, “Multi-scale image fusion using complex extensions of EMD,” IEEE Trans. Signal Process.57(4), 1626–1630 (2009). [CrossRef]
  25. D. Mandic, M. Golz, A. Kuh, D. Obradovic, T. Tanaka, G. Souretis, W. Leong, D. Looney, and M. Hulle, “Complex Empirical Mode Decomposition for Multichannel Information Fusion,” in Signal Processing Techniques for Knowledge Extraction and Information Fusion (Springer, 2008), pp. 243–260.
  26. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in Proceedings of the 24th annual conference on Computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing Co, 1997) pp. 369–378. [CrossRef]
  27. K. Stark, S. Vainio, G. Vassileva, and A. P. McMahon, “Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4,” Nature372(6507), 679–683 (1994). [CrossRef] [PubMed]
  28. T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods4(1), 31–33 (2007). [CrossRef] [PubMed]
  29. A. Cheddad, C. Svensson, J. Sharpe, F. Georgsson, and U. Ahlgren, “Image processing assisted algorithms for optical projection tomography,” IEEE Trans. Med. Imaging31(1), 1–15 (2012). [CrossRef] [PubMed]
  30. A. U. Eriksson, C. Svensson, A. Hörnblad, A. Cheddad, E. Kostromina, M. Eriksson, N. Norlin, A. Pileggi, J. Sharpe, F. Georgsson, T. Alanentalo, and U. Ahlgren, “Near infrared Optical projection tomography for assessments of β-cell mass distribution in diabetes research,” J. Vis. Exp. (71): e50238 (2013). [PubMed]
  31. S. G. Nikolov, D. R. Bull, C. N. Canagarajah, M. Halliwell, and P. N. T. Wells, “Image fusion using a 3-D wavelet transform,” in Proceedings of IEEE Conference on Image Processing And Its Applications.(IEEE, 1999), pp. 235–239. [CrossRef]
  32. E. D. Pisano, S. Zong, B. M. Hemminger, M. DeLuca, R. E. Johnston, K. Muller, M. P. Braeuning, and S. M. Pizer, “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms,” J. Digit. Imaging11(4), 193–200 (1998). [CrossRef] [PubMed]
  33. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput Vision Graph39(3), 355–368 (1987). [CrossRef]
  34. S. M. Pizer, J. B. Zimmerman, and E. V. Staab, “Adaptive grey level assignment in CT scan display,” J. Comput. Assist. Tomogr.8(2), 300–305 (1984). [PubMed]
  35. K. Zuiderveld, “Contrast Limited Adaptive Histogram Equalization,” in Graphic Gems IV, S. H. Paul, ed. (Academic Press Professional, Inc., 1994), pp. 474–485.
  36. C.-J. Du and D.-W. Sun, “Retrospective shading correction of confocal laser canning microscopy beef images for three-dimensional visualization,” Food Bioprocess Tech2(2), 167–176 (2009). [CrossRef]
  37. L. Choudur, U. Dayal, C. Gupta, and R. Swaminatha, “On wavelet compression and cardinality estimation of enterprise data” (2010), retrieved http://www.hpl.hp.com/techreports/2010/HPL-2010-132.pdf .
  38. E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, “High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics), (Morgan Kaufmann Publishers Inc., 2005).
  39. A. Hörnblad, A. Cheddad, and U. Ahlgren, “An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution,” Islets3(4), 204–208 (2011). [CrossRef] [PubMed]
  40. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol.50(19), 4645–4665 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited