OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Fluorescence enhancement with deep-ultraviolet surface plasmon excitation

Atsushi Ono, Masakazu Kikawada, Rentaro Akimoto, Wataru Inami, and Yoshimasa Kawata  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17447-17453 (2013)
http://dx.doi.org/10.1364/OE.21.017447


View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental demonstration of fluorescence enhancement in fluorescent thin film using surface plasmon excitation in deep-ultraviolet (deep-UV) region. Surface plasmon resonance in deep-UV is excited on aluminum thin film in the Kretschmann-Raether geometry. Considering the oxidation thickness of aluminum, the experimentally measured incident angle dependence of reflectance show good agreement with Fresnel theory. Surface plasmon resonance was excited at the incident angle of 49 degrees for 266 nm p-polarized excitation light on the film of 18 nm-thick aluminum with 6.5 nm-thick alumina. Fluorescence of CdS quantum dots coated on this aluminum film was enhanced to 18-fold in intensity by the surface plasmon excitation.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 19, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: July 8, 2013
Published: July 15, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Atsushi Ono, Masakazu Kikawada, Rentaro Akimoto, Wataru Inami, and Yoshimasa Kawata, "Fluorescence enhancement with deep-ultraviolet surface plasmon excitation," Opt. Express 21, 17447-17453 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-15-17447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kawata, Near-field and surface plasmon polaritons (Springer, 2001).
  2. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer’s disease,” Nano Lett.4(6), 1029–1034 (2004). [CrossRef]
  3. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25(6), 372–374 (2000). [CrossRef] [PubMed]
  4. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett.19(3), 159–161 (1994). [CrossRef] [PubMed]
  5. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005). [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  7. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” Nanophoton.1(3-4), 235–248 (2012). [CrossRef]
  8. R. K. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  10. H. S. Sands, F. Demangeot, E. Bonera, S. Webster, R. Bennett, I. P. Hayward, F. Marchi, D. A. Smith, and D. N. Batchelder, “Development of a combined confocal and scanning near-field Raman microscope for deep UV laser excitation,” J. Raman Spectrosc.33(9), 730–739 (2002). [CrossRef]
  11. T. Dörfer, M. Schmitt, and J. Popp, “Deep-UV surface-enhanced Raman scattering,” J. Raman Spectrosc.38(11), 1379–1382 (2007). [CrossRef]
  12. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc.40(9), 1324–1330 (2009). [CrossRef]
  13. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys.104(8), 083107 (2008). [CrossRef]
  14. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,” J. Phys. Chem. B108(50), 19114–19118 (2004). [CrossRef] [PubMed]
  15. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem.79(17), 6480–6487 (2007). [CrossRef] [PubMed]
  16. Y. Watanabe, W. Inami, and Y. Kawata, “Deep-ultraviolet light excites surface plasmon for the enhancement of photoelectron emission,” J. Appl. Phys.109(2), 023112 (2011). [CrossRef]
  17. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir12(3), 788–800 (1996). [CrossRef]
  18. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5(4), 2535–2546 (2011). [CrossRef] [PubMed]
  19. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett.8(5), 1461–1471 (2008). [CrossRef] [PubMed]
  20. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C112(36), 13958–13963 (2008). [CrossRef]
  21. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett.12(11), 6000–6004 (2012). [CrossRef] [PubMed]
  22. R. D. Olney and R. J. Romagnoli, “Optical effects of surface plasma waves with damping in metallic thin films,” Appl. Opt.26(11), 2279–2282 (1987). [CrossRef] [PubMed]
  23. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett.93(16), 166108 (2004). [CrossRef] [PubMed]
  24. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett.7(10), 3157–3164 (2007). [CrossRef] [PubMed]
  25. J. Zhu, J.-J. Li, and J.-W. Zhao, “Distance-dependent fluorescence quenching efficiency of gold nanodisk: effect of aspect ratio-dependent plasmonic absorption,” Plasmonics7(2), 201–207 (2012). [CrossRef]
  26. W. Zhang, F. Ding, W.-D. Li, Y. Wang, J. Hu, and S. Y. Chou, “Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting,” Nanotechnology23(22), 225301 (2012). [CrossRef] [PubMed]
  27. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett.7(2), 496–501 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited