OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography

Arno Bouwens, Daniel Szlag, Maciej Szkulmowski, Tristan Bolmont, Maciej Wojtkowski, and Theo Lasser  »View Author Affiliations


Optics Express, Vol. 21, Issue 15, pp. 17711-17729 (2013)
http://dx.doi.org/10.1364/OE.21.017711


View Full Text Article

Enhanced HTML    Acrobat PDF (2704 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) and optical coherence microscopy (OCM) allow the acquisition of quantitative three-dimensional axial flow by estimating the Doppler shift caused by moving scatterers. Measuring the velocity of red blood cells is currently the principal application of these methods. In many biological tissues, blood flow is often perpendicular to the optical axis, creating the need for a quantitative measurement of lateral flow. Previous work has shown that lateral flow can be measured from the Doppler bandwidth, albeit only for simplified optical systems. In this work, we present a generalized model to analyze the influence of relevant OCT/OCM system parameters such as light source spectrum, numerical aperture and beam geometry on the Doppler spectrum. Our analysis results in a general framework relating the mean and variance of the Doppler frequency to the axial and lateral flow velocity components. Based on this model, we present an optimized acquisition protocol and algorithm to reconstruct quantitative measurements of lateral and axial flow from the Doppler spectrum for any given OCT/OCM system. To validate this approach, Doppler spectrum analysis is employed to quantitatively measure flow in a capillary with both extended focus OCM and OCT.

© 2013 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 29, 2013
Manuscript Accepted: July 12, 2013
Published: July 17, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Arno Bouwens, Daniel Szlag, Maciej Szkulmowski, Tristan Bolmont, Maciej Wojtkowski, and Theo Lasser, "Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography," Opt. Express 21, 17711-17729 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-15-17711


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66, 239–303 (2003). [CrossRef]
  2. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–40 (2006). [CrossRef] [PubMed]
  3. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15, 4083–97 (2007). [CrossRef] [PubMed]
  4. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express15, 12636–53 (2007). [CrossRef] [PubMed]
  5. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33, 1530–2 (2008). [CrossRef] [PubMed]
  6. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16, 11438–11452 (2008). [CrossRef] [PubMed]
  7. V. J. Srinivasan, J. Jiang, M. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. Cable, and D. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35, 43–45 (2010). [CrossRef] [PubMed]
  8. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19, 12141–55 (2011). [CrossRef] [PubMed]
  9. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22, 1439–41 (1997). [CrossRef]
  10. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22, 64–66 (1997). [CrossRef] [PubMed]
  11. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett.29, 171–3 (2004). [CrossRef] [PubMed]
  12. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13, 5483–93 (2005). [CrossRef] [PubMed]
  13. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express15, 408–22 (2007). [CrossRef] [PubMed]
  14. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint spectral and time-domain optical coherence tomography,” Opt. Express16, 6008–6025 (2008). [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express17, 8926–40 (2009). [CrossRef] [PubMed]
  16. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18, 2477–94 (2010). [CrossRef] [PubMed]
  17. B. Baumann, B. Potsaid, M. Kraus, J. Liu, D. Huang, J. Hornegger, A. Cable, J. Duker, and J. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2, 1539–1552 (2011). [CrossRef] [PubMed]
  18. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19, 1217–1227 (2011). [CrossRef] [PubMed]
  19. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time-domain optical coherence tomography,” Opt. Express17, 10584–10598 (2009). [CrossRef] [PubMed]
  20. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express17, 23736–54 (2009). [CrossRef]
  21. J. Walther and E. Koch, “Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement,” in “Optical Coherence Tomography and Coherence Techniques V,”, R. A. Leitgeb and B. E. Bouma, eds. (Proc. of SPIE, 2011), p. 80910L.
  22. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. de Boer, and J. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25, 1358–1360 (2000). [CrossRef]
  23. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett.27, 409–11 (2002). [CrossRef]
  24. D. Piao, L. L. Otis, and Q. Zhu, “Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography,” Opt. Lett.28, 1120–1122 (2003). [CrossRef] [PubMed]
  25. S. G. Proskurin, Y. He, and R. K. Wang, “Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography,” Opt. Lett.28, 1227–1229 (2003). [CrossRef] [PubMed]
  26. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt.15, 016029 (2011). [CrossRef]
  27. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express3, 612–29 (2012). [CrossRef] [PubMed]
  28. R. V. Edwards, “Spectral analysis of the signal from the laser Ddoppler flowmeter: Time-independent systems,” J. Appl. Phys.42, 837 (1971). [CrossRef]
  29. B. Park, M. Pierce, B. Cense, and S. Yun, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 m,” Opt. Express13(2005). [CrossRef]
  30. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31, 2450–2452 (2006). [CrossRef] [PubMed]
  31. H. Gross, Handbook of Optical Systems, vol. 1 (Wiley-VCH, Weinheim, 2005). [CrossRef]
  32. M. Gu, Advanced Optical Imaging Theory (Springer, Berlin, 1999).
  33. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, Greenwood Village, 2005), 3rd ed.
  34. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 2009), 7th ed.
  35. M. Villiger and T. Lasser, “Image formation and tomogram reconstruction in optical coherence microscopy,” J. Opt. Soc. Am. A27, 2216–2228 (2010). [CrossRef]
  36. C. J. R. Sheppard, M. Roy, and M. D. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt.43, 1493–1502 (2004). [CrossRef] [PubMed]
  37. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nature Phys.3, 129–134 (2007). [CrossRef]
  38. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS109, 7175–7180 (2012). [CrossRef] [PubMed]
  39. C. J. R. Sheppard, S. Kou, and C. Depeursinge, “Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy,” J. Opt. Soc. Am. A29, 244–250 (2012). [CrossRef]
  40. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, and M. Wojtkowski, “Efficient reduction of speckle noise in Optical Coherence Tomography,” Opt. Express20, 15149–15169 (2012). [CrossRef]
  41. A. Chan, E. Lam, and V. J. Srinivasan, “Comparison of kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography,” IEEE T. Med. Imaging (2013). [CrossRef]
  42. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27, 243–245 (2002). [CrossRef]
  43. T. Bolmont, A. Bouwens, C. Pache, M. Dimitrov, C. Berclaz, M. Villiger, B. M. Wegenast-Braun, T. Lasser, and P. C. Fraering, “Label-free imaging of cerebral beta-amyloidosis with extended-focus optical coherence microscopy,” J. Neurosci.32, 14548–14556 (2012). [CrossRef] [PubMed]
  44. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, “Dynamic light scattering optical coherence tomography,” Opt. Express20, 22262–77 (2012). [CrossRef] [PubMed]
  45. M. Villiger, C. Pache, and T. Lasser, “Dark-Field optical coherence microscopy,” Opt. Lett.35, 3489–3491 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited