OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Fluid tunable transition from trapping to discrete diffraction in waveguide arrays

Eike Zeller, Geethaka C. Devendra, Thach G. Nguyen, and Arnan Mitchell  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18196-18206 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2145 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fluid tunable transition from trapping to discrete diffraction in planar polymer waveguide arrays. A novel optofluidic polymer waveguide array platform was engineered to allow a wavelength dependent transition from a localised state where light is trapped in a defect mode to delocalised state where light is spreading through discrete diffraction. The spectral location of this transition can be controlled through a variation of the fluid’s refractive index. The platform is compatible with aqueous solutions, making it an interesting candidate for an integrated refractive index sensor to perform label-free biosensing.

© 2013 osa

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.6010) Integrated optics : Sensors
(230.3120) Optical devices : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

Original Manuscript: May 23, 2013
Revised Manuscript: July 14, 2013
Manuscript Accepted: July 14, 2013
Published: July 22, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

Eike Zeller, Geethaka C. Devendra, Thach G. Nguyen, and Arnan Mitchell, "Fluid tunable transition from trapping to discrete diffraction in waveguide arrays," Opt. Express 21, 18196-18206 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442, 381–386 (2006). [CrossRef] [PubMed]
  2. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5, 598–604 (2011). [CrossRef]
  3. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1, 106–114 (2007). [CrossRef]
  4. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5, 591–597 (2011). [CrossRef] [PubMed]
  5. I. Garanovich, S. Longhi, A. Sukhorukov, and Y. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides,” Phys. Rep.518, 1–79 (2012). [CrossRef]
  6. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817–823 (2003). [CrossRef] [PubMed]
  7. S. Somekh, E. Garmire, A. Yariv, H. Garvin, and R. Hunsperger, “Channel optical waveguide directional couplers,” Appl. Phys. Lett.22, 46–47 (1973). [CrossRef]
  8. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett.85, 1863–1866 (2000). [CrossRef] [PubMed]
  9. J. M. Moison, N. Belabas, C. Minot, and J. A. Levenson, “Discrete photonics in waveguide arrays,” Opt. Lett.16, 2462–2464 (2009). [CrossRef]
  10. H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Bräuer, “Tailoring guided modes in waveguide arrays,” Opt. Express11, 3404–3411 (2003). [CrossRef] [PubMed]
  11. C. R. Rosberg, F. Bennet, D. N. Neshev, and P. Rasmussen, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express15, 12145–12150 (2007). [CrossRef] [PubMed]
  12. F. Bennet and J. Farnell, “Waveguide arrays in selectively infiltrated photonic crystal fibres,” Opt. Commun.283, 4069–4073 (2010). [CrossRef]
  13. M. Vieweg, T. Gissibl, Y. V. Kartashov, L. Torner, and H. Giessen, “Spatial solitons in optofluidic waveguide arrays with focusing ultrafast Kerr nonlinearity,” Opt. Lett.37, 2454–2456 (2012). [CrossRef] [PubMed]
  14. E. Zeller, F. H. Bennet, D. N. Neshev, and A. Mitchell, “Laminated air structured and fluid infiltrated polymer waveguides,” IEEE Photon. Technol. Lett.23, 1564–1566 (2011). [CrossRef]
  15. F. Bennet, I. A. Amuli, A. Sukhorukov, W. Krolikowski, D. Neshev, and Y. Kivshar, “Focusing-to-defocusing crossover in nonlinear periodic structures,” J. Opt. Soc. Am. A35, 3213–3215 (2010).
  16. A. Fratalocchi, G. Assanto, K. A. Brzdakiewicz, and M. A. Karpierz, “Discrete light propagation and self-trapping in liquid crystals,” Opt. Express13, 1808–1815 (2005). [CrossRef] [PubMed]
  17. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed (Wiley-IEEE, 2002).
  18. A. Yariv, Optical Electronics in Mordern Communications, 5th ed (Oxford University, 1997).
  19. A. A. Kayani, A. F. Chrimes, K. Khoshmanesh, V. Sivan, E. Zeller, K. Kalantar-Zadeh, and A. Mitchell, “Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles,” Microfluid. Nanofluid.11, 93–104 (2011). [CrossRef]
  20. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” J. Micromech. Microeng.7, 121–124 (1997). [CrossRef]
  21. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photon. Rev.6, 463–487 (2012). [CrossRef]
  22. W. C. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron.11, 11–16 (2005). [CrossRef]
  23. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32, 3080 (2007). [CrossRef] [PubMed]
  24. S. Grego, K. Gilchrist, J. Carlson, and B. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161, 721–727 (2012). [CrossRef]
  25. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10, 1167–1173 (2010). [CrossRef] [PubMed]
  26. J. Dostálek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindová, J. Špirková, J. Škvor, and J. Schröfel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B Chem.76, 8–12 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited