OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 8 — Sep. 4, 2013

Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement

C. Estupiñán-López, C. Tolentino Dominguez, and R. E. de Araujo  »View Author Affiliations

Optics Express, Vol. 21, Issue 15, pp. 18592-18601 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1907 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A modified spatial filtering method that improves the sensitivity of single-beam and mode-mismatched thermal lens spectroscopy (TLS) for fluorescence quantum yield measurement is presented. The method is based on the detection of the external part of a laser beam transmitted by the fluorescent sample (eclipsing detection mode). The experimental results show that the signal/noise (S/N) ratio of the absolute quantum yield of Rh6G can be enhanced up to ~1400% using the eclipsing detection mode on the TLS experimental setup. The method was evaluated by measuring the fluorescence quantum yield of varying concentration of ethanolic solutions of Rhodamine 6G.

© 2013 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.4760) Materials : Optical properties
(190.4870) Nonlinear optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 10, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: July 17, 2013
Published: July 26, 2013

Virtual Issues
Vol. 8, Iss. 8 Virtual Journal for Biomedical Optics

C. Estupiñán-López, C. Tolentino Dominguez, and R. E. de Araujo, "Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement," Opt. Express 21, 18592-18601 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem.51(6), 728–731 (1979). [CrossRef]
  2. T. Imasaka, K. Miyaishi, and N. Ishibashi, “Application of the thermal lens effect for determination of iron(II) with 4,7-diphenyl-1,10-phenanthroline disulfonic acid,” Anal. Chim. Acta115(1), 407–410 (1980). [CrossRef]
  3. G. C. Nieman and S. D. Colson, “Pressure effects on the two-photon spectrum of trans-butadiene as detected by gas phase transient lensing spectroscopy,” J. Chem. Phys.68(6), 2994–2996 (1978). [CrossRef]
  4. J. R. Whinnery, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res.7(7), 225–231 (1974). [CrossRef]
  5. C. E. Buffett and M. D. Morris, “Thermal lens detection for liquid chromatography,” Anal. Chem.54(11), 1824–1825 (1982). [CrossRef]
  6. R. A. Leach and J. M. Harris, “Thermal lens calorimetry,” J. Chromatogr. A218, 15–19 (1981). [CrossRef]
  7. D. R. Snook and R. D. Lowe, “Thermal lens spectroscopy. A review,” Analyst (Lond.)120(8), 2051–2068 (1995). [CrossRef]
  8. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long transient effects in lasers with inserted liquid samples,” J. Appl. Phys.36(1), 3–8 (1965). [CrossRef]
  9. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurement by mean of the thermal lens effect using a He:Ne laser,” Appl. Phys. Lett.5(7), 141–143 (1964). [CrossRef]
  10. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys.165(2–3), 385–396 (1992). [CrossRef]
  11. M. L. Baesso, J. Shen, and R. D. Snook, “Time-resolved thermal lens measurement of thermal diffusivity of soda-lime glass,” Chem. Phys. Lett.197(3), 255–258 (1992). [CrossRef]
  12. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt.21(9), 1663–1669 (1982). [CrossRef] [PubMed]
  13. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and E. C. Hammond, “Flashlamp‐pumped organic‐dye lasers,” J. Chem. Phys.48(10), 4726–4742 (1968). [CrossRef]
  14. G. A. Crosby and J. N. Demas, “The measurement of fluorescence quantum yields. Review,” J. Phys. Chem.75(8), 991–1024 (1971). [CrossRef]
  15. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger, “Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields,” Anal. Chem.83(9), 3431–3439 (2011). [CrossRef] [PubMed]
  16. R. A. Cruz, V. Pilla, and T. Catunda, “Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core-shell quantum dots by thermal lens spectrometry,” J. Appl. Phys.107(8), 083504 (2010). [CrossRef]
  17. A. Kurian, N. A. George, B. Paul, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies on fluorescence efficiency and photodegradation of Rhodamine 6G doped PMMA using a dual beam thermal lens technique,” Laser Chem.20(2–4), 99–110 (2002). [CrossRef]
  18. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt.12(1), 72–79 (1973). [CrossRef] [PubMed]
  19. J. H. Brannon and D. J. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem.82(6), 705–709 (1978). [CrossRef]
  20. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita, “Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector,” Phys. Chem. Chem. Phys.11(42), 9850–9860 (2009). [CrossRef] [PubMed]
  21. C. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, and U. R. Genger, “Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards,” Talanta90, 30–37 (2012). [CrossRef] [PubMed]
  22. A. M. Brouwer, “Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report),” Pure Appl. Chem.83(12), 2213–2228 (2011). [CrossRef]
  23. A. Mandelis, M. Munidasa, and A. Othonos, “Single-ended infrared photothermal radiometric measurement of quantum efficiency and metastable lifetime in solid-state laser materials: The Case of Ruby (Cr3+:A1203),” IEEE J. Quantum Electron.29(6), 1498–1504 (1993). [CrossRef]
  24. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: Application to Nd3+-doped fluoride glass,” Appl. Phys. Lett.78(21), 3220 (2001). [CrossRef]
  25. J. Słaby, “Application of spatial filtering in thermal lensing detection,” Opt. Commun.64(2), 89–93 (1987). [CrossRef]
  26. J. Slaby, “Background illumination filtering in thermal lens spectroscopy,” Anal. Chem.61(22), 2496–2499 (1989). [CrossRef]
  27. F. Bloisi, L. Vicari, P. Cavaliere, S. Martellucci, and J. Quartieri, “Spatial filtering in the detection of transverse phase modulation through a nonlinear thin film,” Opt. Commun.68(6), 391–395 (1988). [CrossRef]
  28. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wavefront distortion,” Opt. Lett.19(5), 317–319 (1994). [CrossRef] [PubMed]
  29. A. S. L. Gomes, E. L. Filho, C. B. de Araújo, D. Rativa, and R. E. de Araujo, “Thermally managed eclipse Z-scan,” Opt. Express15(4), 1712–1717 (2007). [CrossRef] [PubMed]
  30. R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectroscopy: Optimizing amplitude and shortening the transient time,” AIP Adv.1(2), 022154 (2011). [CrossRef]
  31. B. Li and R. Gupta, “Optical saturation in continuous-wave photothermal deflection spectroscopy: quantitative investigation of fundamental and harmonic components,” Appl. Opt.40(9), 1563–1569 (2001). [CrossRef] [PubMed]
  32. Y. M. Biosca and G. Ramis-Ramos, “Optical saturation thermal lens spectrometry in non-polar solvents,” Anal. Chim. Acta345(1–3), 257–263 (1997). [CrossRef]
  33. S. E. Bialkowski, A. Chartier “Using slow measurement systems to measure fast excited-state kinetics with nonlinear rate-competitive optical bleaching,” in Photoacoustic and Photothermal Phenomena:Tenth International Conference, F. Scudieri, M. Bertolotti, eds., AIP Conf. Proc. 463, 14–17 (1999). [CrossRef]
  34. M. Fischer and J. Georges, “Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectroscopy,” Chem. Phys. Lett.260(1–2), 115–118 (1996). [CrossRef]
  35. F. López Arbeloa, P. Ruiz Ojeda, and I. López Arbeloa, “The fluorescence quenching mechanisms of rhodamine 6G in concentrated ethanolic solution,” J. Photochem. Photobiol., A45(3), 313–323 (1988). [CrossRef]
  36. C. Tolentino Dominguez, E. de Lima, P. C. de Oliveira, and F. López Arbeloa, “Using random laser emission to investigate the bonding energy of laser dyes dimers,” Chem. Phys. Lett.464(4–6), 245–248 (2008). [CrossRef]
  37. R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some rhodamine dyes,” J. Lumin.27(4), 455–462 (1982). [CrossRef]
  38. R. M. Negri, A. Zalts, E. A. San Román, P. F. Aramendí, and S. E. Braslavsky, “Carboxylated Zinc-Phthalocyanine, influence of dimerization on the spectroscopy properties. An absorption, emission, and thermal lensing study,” Photochem. Photobiol.53(3), 317–322 (1991). [CrossRef]
  39. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determine using transient thermal lens technique,” Mod. Phys. Lett. B13(16), 563–576 (1999). [CrossRef]
  40. L. S. Rohwer and J. E. Martin, “Measuring the absolute quantum efficiency of luminescent materials,” J. Lumin.115(3–4), 77–90 (2005). [CrossRef]
  41. R. R. Hammond, “Selfabsorption of molecular fluorescence, the design of equipment for measurement of fluorescence decay, and the decay times of some laser dyes,” J. Chem. Phys.70(8), 3884–3894 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited