OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Adaptive Wiener filter super-resolution of color filter array images

Barry K. Karch and Russell C. Hardie  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 18820-18841 (2013)
http://dx.doi.org/10.1364/OE.21.018820


View Full Text Article

Enhanced HTML    Acrobat PDF (1901 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

© 2013 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.3020) Image processing : Image reconstruction-restoration
(100.6640) Image processing : Superresolution

ToC Category:
Image Processing

History
Original Manuscript: April 8, 2013
Revised Manuscript: June 12, 2013
Manuscript Accepted: June 20, 2013
Published: August 1, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Barry K. Karch and Russell C. Hardie, "Adaptive Wiener filter super-resolution of color filter array images," Opt. Express 21, 18820-18841 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-16-18820


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Bayer, “Color imaging array,” Eastman Kodak Co., U.S. Patent 3,971,065 (Jul 20 1976).
  2. R. Ramanath, W. Snyder, G. Bilbro, and W. Sander, “Demosaicking methods for the Bayer color arrays,” J. Electron. Imaging11(3), 306–315 (2002). [CrossRef]
  3. B. K. Gunturk, J. Glotzbach, Y. Altunbasak, R. W. Schafer, and R. M. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Proc. Mag.22(1), 44–54 (2005). [CrossRef]
  4. X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic survey,” Proc. SPIE6822, 68221J, 68221J-15 (2008). [CrossRef]
  5. R. D. Fiete, “Image quality and λFN/p for remote sensing systems,” Opt. Eng.38(7), 1229–1240 (1999). [CrossRef]
  6. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag.20(3), 21–36 (2003). [CrossRef]
  7. P. Milanfar, Super-Resolution Imaging (CRC, 2010).
  8. J. C. Gillette, T. M. Stadtmiller, and R. C. Hardie, “Aliasing reduction in staring infrared imagers utilizing subpixel techniques,” Opt. Eng.34(11), 3130–3137 (1995). [CrossRef]
  9. M. Alam, M. S. Bognar, R. C. Hardie, and B. J. Yasuda, “Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames,” IEEE Trans. Instrum. Meas.49(5), 915–923 (2000). [CrossRef]
  10. S. Lertrattanapanich and N. K. Bose, “High resolution image formation from low resolution frames using Delaunay triangulation,” IEEE Trans. Image Process.11(12), 1427–1441 (2002). [CrossRef] [PubMed]
  11. K. Aizawa, T. Komatsu, and T. Saito, “Acquisition of very high resolution images using stereo cameras,” P. Soc. Photo-Opt. Ins.1605, 318–328 (1991).
  12. A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration,” Int. Conf. Acoust Spee.3, 169–172 (1992). [CrossRef]
  13. H. Shekarforoush and R. Chellappa, “Data-driven multichannel superresolution with application to video sequences,” J. Opt. Soc. Am. A16(3), 481–492 (1999). [CrossRef]
  14. T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 1–12 (2006).
  15. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt.45(6), 1203–1214 (2006). [CrossRef] [PubMed]
  16. R. C. Hardie, “A fast image super-resolution algorithm using an adaptive Wiener filter,” IEEE Trans. Image Process.16(12), 2953–2964 (2007). [CrossRef] [PubMed]
  17. R. C. Hardie, D. A. LeMaster, and B. M. Ratliff, “Super-resolution for imagery from integrated microgrid polarimeters,” Opt. Express19(14), 12937–12960 (2011). [CrossRef] [PubMed]
  18. R. C. Hardie, K. J. Barnard, and R. Ordonez, “Fast super-resolution with affine motion using an adaptive Wiener filter and its application to airborne imaging,” Opt. Express19(27), 26208–26231 (2011). [CrossRef] [PubMed]
  19. B. Narayanan, R. C. Hardie, K. E. Barner, and M. Shao, “A computationally efficient super-resolution algorithm for video processing using partition filters,” IEEE Circ. Syst. Vid.17(5), 621–634 (2007). [CrossRef]
  20. M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process.10(8), 1187–1193 (2001). [CrossRef] [PubMed]
  21. M. Shimizu, T. Yano, and M. Okutomi, “Super-resolution under image deformation,” Int. C. Patt. Recog.3, 586–589 (2004).
  22. T. Gotoh and M. Okutomi, “Direct super-resolution and registration using raw CFA images,” Proc. CVPR IEEE2, 600–607 (2004). [CrossRef]
  23. R. Sasahara, H. Hasegawa, I. Yamada, and K. Sakaniwa, “A color super-resolution with multiple nonsmooth constraints by hybrid steepest descent method,” IEEE Trans. Image Proc.1, 857–860 (2005).
  24. S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of color images,” IEEE Trans. Image Proc.15(1), 141–159 (2006). [CrossRef] [PubMed]
  25. M. Gevrekci, B. K. Gunturk, and Y. Altunbasak, “POCS-based restoration of Bayer-sampled image sequences,” IEEE Conf. Acoust. Spee. 1, 753–756 (2007). [CrossRef]
  26. Y. R. Li and D. Q. Dai, “Color superresolution reconstruction and demosaicing using elastic net and tight frame,” IEEE Circuits-I55(11), 3500–3512 (2008). [CrossRef]
  27. M. Trimeche, “Color demosaicing using multi-frame super-resolution,” Eur. Signal Process. Conf. (2008).
  28. D. A. Sorrentino and A. Antoniou, “Improved hybrid demosaicing and color super-resolution implementation using quasi-Newton algorithms,” Can. Con. El. Comp. En. 815–818 (2009).
  29. P. Vandewalle, K. Krichane, D. Alleysson, and S. Süsstrunk, “Joint demosaicing and super-resolution imaging from a set of unregistered aliased images” Proc. SPIE IS&T Elect. Im. 65020A (2007).
  30. T. Heinze, M. von Lowis, and A. Polze, “Joint multi-frame demosaicing and super-resolution with artificial neural networks,” IWSSIP2012, 540–543 (2012).
  31. M. Shao, K. E. Barner, and R. C. Hardie, “Partition-based interpolation for color filter array demosaicking and super-resolution reconstruction,” Opt. Eng.44(10), 107003 (2005). [CrossRef]
  32. M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012).
  33. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  34. R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, and E. A. Watson, “High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system,” Opt. Eng.37(1), 247–260 (1998). [CrossRef]
  35. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice Hall, 1989).
  36. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice Hall PTR, 1992).
  37. A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, 1989).
  38. P. Milanfar, “MDSP resolution enhancement software,” Copyright 2009 by University of California. http://users.soe.ucsc.edu/~milanfar/software/superresolution.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (4486 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited