OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation

Anton Sergeyev, Reinhard Geiss, Alexander S. Solntsev, Andrea Steinbrück, Frank Schrempel, Ernst-Bernhard Kley, Thomas Pertsch, and Rachel Grange  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19012-19021 (2013)
http://dx.doi.org/10.1364/OE.21.019012


View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the nonlinear optical properties of lithium niobate (LiNbO3) nanowires (NWs) fabricated by a top-down ion beam enhanced etching method. First, we demonstrate generation and propagation of the second-harmonic (SH) light in LiNbO3 NWs of typical rectangular cross-sections of 400 x 600 nm2 and length from 10 to 50 μm. Then, we show local fluorescent excitation of 4',6-diamidino-2-phenylindole (DAPI) dye with the propagated SH signal in standard concentrations as for biological applications. By measuring the detected average power of the propagated fundamental harmonic (FH) and the SH signal at the output of the NWs, we directly prove the dominating role of the SH signal over possible two-photon excitation processes with the FH in the DAPI dye. We estimate that 63 ± 6 pW of the propagated SH average power is required for detectable dye excitation. Finally, we model the waveguiding of the SH light to determine the smallest NW cross-section (around 40x60 nm2) which is potentially able to excite fluorescence with a FH intensity below the cell damage threshold.

© 2013 OSA

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4180) Nonlinear optics : Multiphoton processes
(230.7370) Optical devices : Waveguides
(260.2510) Physical optics : Fluorescence

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 21, 2013
Revised Manuscript: July 11, 2013
Manuscript Accepted: July 11, 2013
Published: August 2, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Anton Sergeyev, Reinhard Geiss, Alexander S. Solntsev, Andrea Steinbrück, Frank Schrempel, Ernst-Bernhard Kley, Thomas Pertsch, and Rachel Grange, "Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation," Opt. Express 21, 19012-19021 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-16-19012


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  2. P. Yang, “Semiconductor nanowire building blocks: From flux line pinning to artificial photosynthesis,” MRS Bull.37(09), 806–813 (2012). [CrossRef]
  3. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004). [CrossRef]
  4. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003). [CrossRef] [PubMed]
  5. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett.7(12), 3675–3680 (2007). [CrossRef] [PubMed]
  6. P. Yang, R. Yan, and M. Fardy, “Semiconductor nanowire: what’s next?” Nano Lett.10(5), 1529–1536 (2010). [CrossRef] [PubMed]
  7. C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011). [CrossRef] [PubMed]
  8. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011). [CrossRef] [PubMed]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  10. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  11. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Ann. Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef] [PubMed]
  12. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science198(4323), 1264–1267 (1977). [CrossRef] [PubMed]
  13. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett.7(3), 831–836 (2007). [CrossRef] [PubMed]
  14. J. C. Johnson, H. Q. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002). [CrossRef]
  15. S. W. Chan, R. Barille, J. M. Nunzi, K. H. Tam, Y. H. Leung, W. K. Chan, and A. B. Djurisic, “Second harmonic generation in zinc oxide nanorods,” Appl. Phys. B84(1-2), 351–355 (2006). [CrossRef]
  16. A. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C112(29), 10721–10724 (2008). [CrossRef]
  17. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett.96(5), 051110 (2010). [CrossRef]
  18. R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F.-J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett.12(10), 5412–5417 (2012). [CrossRef] [PubMed]
  19. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012). [CrossRef]
  20. F. Wang, P. J. Reece, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Nonlinear optical processes in optically trapped InP nanowires,” Nano Lett.11(10), 4149–4153 (2011). [CrossRef] [PubMed]
  21. V. Barzda, R. Cisek, T. L. Spencer, and U. Philipose, “Giant anisotropy of second harmonic generation for a single ZnSe nanowire,” Appl. Phys. Lett. 92, 113111 – 113111–3 (2008). [CrossRef]
  22. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett.12(2), 820–826 (2012). [CrossRef] [PubMed]
  23. R. Grange, J.-W. Choi, C.-L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forró, and D. Psaltis, “Lithium niobate nanowires synthesis, optical properties, and manipulation,” Appl. Phys. Lett.95(14), 143105 (2009). [CrossRef]
  24. B. Knabe, K. Buse, W. Assenmacher, and W. Mader, “Spontaneous polarization in ultrasmall lithium niobate nanocrystals revealed by second harmonic generation,” Phys. Rev. B86(19), 195428 (2012). [CrossRef]
  25. F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett.11(6), 2517–2521 (2011). [CrossRef] [PubMed]
  26. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  27. R. W. Boyd, Nonlinear Optics, 2nd ed. (Amsterdam: Academic Press, 2003).
  28. D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: a survey of optical properties and biocompatibility,” ACS Nano6(3), 2542–2549 (2012). [CrossRef] [PubMed]
  29. H. Hartung, E.-B. Kley, T. Gischkat, F. Schrempel, W. Wesch, and A. Tünnermann, “Ultra thin high index contrast photonic crystal slabs in lithium niobate,” Opt. Mater.33(1), 19–21 (2010). [CrossRef]
  30. K. G. Porter and Y. S. Feig, “The use of DAPI for identifying aquatic microflora,” Limnol. Oceanogr.25(5), 943–948 (1980). [CrossRef]
  31. F. Otto, “DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA,” Methods Cell Biol.33, 105–110 (1990). [CrossRef] [PubMed]
  32. 4’,6-Diamidino-2-phenylindole (D9542, D8417, D9564) - product information sheet,” http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/d9542pis.Par.0001.File.tmp/d9542pis.pdf .
  33. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  34. A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett.98(23), 231110 (2011). [CrossRef]
  35. K. Morikawa and M. Yanagida, “Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method,” J. Biochem.89(2), 693–696 (1981). [PubMed]
  36. S. Hamada and S. Fujita, “DAPI staining improved for quantitative cytofluorometry,” Histochemistry79(2), 219–226 (1983). [CrossRef] [PubMed]
  37. M. Bass, Handbook of Optics Volume I, 2nd ed. (McGraw-Hill, 1994).
  38. G. Cosa, K. S. Focsaneanu, J. R. McLean, J. P. McNamee, and J. C. Scaiano, “Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution,” Photochem. Photobiol.73(6), 585–599 (2001). [CrossRef] [PubMed]
  39. J. M. Dixon, M. Taniguchi, and J. S. Lindsey, “PhotochemCAD 2: a refined program with accompanying spectral databases for photochemical calculations,” Photochem. Photobiol.81(1), 212–213 (2005). [CrossRef] [PubMed]
  40. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B13(3), 481–491 (1996). [CrossRef]
  41. K. König, P. T. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett.22(2), 135–136 (1997). [CrossRef] [PubMed]
  42. J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, Jr., and J. M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, 2002).
  43. G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, and P. DiTrapani, “Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation,” Phys. Rev. A83(4), 043834 (2011). [CrossRef]
  44. J. I. Dadap, “Optical second-harmonic scattering from cyllindrical particles,” Phys. Rev. B78(20), 121–1098 (2008). [CrossRef]
  45. H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–844 (2012). [CrossRef]
  46. C. J. Barrelet, H.-S. Ee, S.-H. Kwon, and H.-G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett.11(7), 3022–3025 (2011). [CrossRef] [PubMed]
  47. R. Grange, F. Dutto, and A. Radenovic, “Niobates nanowires: synthesis, characterization and applications,” in Nanowires - Implementations and Applications, D. A. Hashim, ed. (InTech, 2011).
  48. J. Richter, A. Steinbrück, T. Pertsch, A. Tünnermann, and R. Grange, “Plasmonic core–shell nanowires for enhanced second-harmonic generation,” Plasmonics8(1), 115–120 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited