OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters

Iain J. H. McCrindle, James Grant, Timothy D. Drysdale, and David R. S. Cumming  »View Author Affiliations

Optics Express, Vol. 21, Issue 16, pp. 19142-19152 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2158 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

© 2013 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: June 6, 2013
Revised Manuscript: July 17, 2013
Manuscript Accepted: July 17, 2013
Published: August 5, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Iain J. H. McCrindle, James Grant, Timothy D. Drysdale, and David R. S. Cumming, "Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters," Opt. Express 21, 19142-19152 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. May, G. Zieger, S. Anders, V. Zakosarenko, H.-G. Meyer, M. Schubert, M. Starkloff, M. Rößler, G. Thorwirth, and U. Krause, “Safe VISITOR: visible, infrared, and terahertz object recognition for security screening application,” Proc. SPIE7309, 73090E (2009). [CrossRef]
  2. M. Kowalski, M. Piszczek, N. Palka, and M. Szustakowski, “Improvement of passive THz camera images,” Proc. SPIE8544, 85440N, 85440N-8 (2012). [CrossRef]
  3. S. G. Kong, J. Heo, F. Boughorbel, Y. Zheng, B. R. Abidi, A. Koschan, M. Yi, and M. A. Abidi, “Multiscale fusion of visible and thermal IR images for illumination-invariant face recognition,” Int. J. Comput. Vis.71(2), 215–233 (2007). [CrossRef]
  4. A. L. Chan and S. R. Schnelle, “Fusing concurrent visible and infrared videos for improved tracking performance,” Opt. Eng.52(1), 017004 (2013). [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  6. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010). [CrossRef] [PubMed]
  7. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett.98(9), 093113 (2011). [CrossRef]
  8. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B75(4), 041102 (2007). [CrossRef]
  9. H.-T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express15(3), 1084–1095 (2007). [CrossRef] [PubMed]
  10. Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, and T.-J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett.99(19), 191909 (2011). [CrossRef]
  11. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express17(21), 18590–18595 (2009). [CrossRef] [PubMed]
  12. H. P. Myers, Introductory Solid State Physics (CRC Press, 1997).
  13. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010). [CrossRef]
  14. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  15. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  16. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  17. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  18. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  19. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett.34(10), 1555–1557 (2009). [CrossRef] [PubMed]
  20. A. M. Melo, M. A. Kornberg, P. Kaufmann, M. H. Piazzetta, E. C. Bortolucci, M. B. Zakia, O. H. Bauer, A. Poglitsch, and A. M. da Silva, “Metal mesh resonant filters for terahertz frequencies,” Appl. Opt.47(32), 6064–6069 (2008). [CrossRef] [PubMed]
  21. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  22. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010). [CrossRef] [PubMed]
  23. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express18(14), 14788–14793 (2010). [CrossRef] [PubMed]
  24. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett.9(1), 235–238 (2009). [CrossRef] [PubMed]
  25. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  26. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  27. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  28. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008). [CrossRef] [PubMed]
  29. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett.36(8), 1524–1526 (2011). [CrossRef] [PubMed]
  30. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  31. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A20(12), 2293–2306 (2003). [CrossRef]
  32. Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett.24(3), 197–199 (2012). [CrossRef]
  33. Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics7(4), 695–699 (2012). [CrossRef]
  34. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320x240 microbolometer focal-plane array,” IEEE Photon. Technol. Lett.18(13), 1415–1417 (2006). [CrossRef]
  35. B.-Y. Hsieh and M. Jarrahi, “Analysis of periodic metallic nano-slits for efficient interaction of terahertz and optical waves at nano-scale dimensions,” J. Appl. Phys.109(8), 084326 (2011). [CrossRef]
  36. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express16(23), 18565–18575 (2008). [CrossRef] [PubMed]
  37. R. P. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1977, (II).
  38. N. Laman and D. Grischkowsky, “Terahertz conductivity of thin metal films,” Appl. Phys. Lett.93(5), 051105 (2008). [CrossRef]
  39. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt.34(22), 4755–4767 (1995). [CrossRef] [PubMed]
  40. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys.102(4), 043517 (2007). [CrossRef]
  41. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  42. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  43. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  44. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  45. Lumerical finite difference time domain (FDTD) Solutions. http://www.lumerical.com
  46. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Science & Tech, 1985), (I, II, III).
  47. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited