OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Balanced detection for spectral domain optical coherence tomography

Wen-Chuan Kuo, Chih-Ming Lai, Yi-Shiang Huang, Cheng-Yi Chang, and Yue-Ming Kuo  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19280-19291 (2013)
http://dx.doi.org/10.1364/OE.21.019280


View Full Text Article

Enhanced HTML    Acrobat PDF (2300 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use and advantages of applying balanced-detection (BD) operation method to high speed spectral domain optical coherence tomography (SDOCT) are presented in this study, which we believe is the first such demonstration. Compared to conventional SDOCT, BD-SDOCT provides two unique advantages. First, the method can suppress background noise and autocorrelation artifacts in biological tissues. Second, it is a power-efficient method which is particularly helpful for high speed SDOCT to eliminate random intensity noise and to achieve shot noise limited detection. This performance allows in vivo three-dimensional tissue visualization with high imaging quality and high speed.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 19, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: July 31, 2013
Published: August 7, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Wen-Chuan Kuo, Chih-Ming Lai, Yi-Shiang Huang, Cheng-Yi Chang, and Yue-Ming Kuo, "Balanced detection for spectral domain optical coherence tomography," Opt. Express 21, 19280-19291 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-16-19280


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. T. H. Ko, D. C. Adler, J. G. Fujimoto, D. Mamedov, V. Prokhorov, V. Shidlovski, and S. Yakubovich, “Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source,” Opt. Express12(10), 2112–2119 (2004). [CrossRef] [PubMed]
  3. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett.21(22), 1839–1841 (1996). [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  5. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002). [CrossRef] [PubMed]
  7. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express14(3), 1145–1160 (2006). [CrossRef] [PubMed]
  8. F. Spöler, S. Kray, P. Grychtol, B. Hermes, J. Bornemann, M. Först, and H. Kurz, “Simultaneous dual-band ultra-high resolution optical coherence tomography,” Opt. Express15(17), 10832–10841 (2007). [CrossRef] [PubMed]
  9. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express17(22), 19486–19500 (2009). [CrossRef] [PubMed]
  10. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  11. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med.17(8), 1010–1014 (2011). [CrossRef] [PubMed]
  12. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004). [CrossRef] [PubMed]
  13. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  14. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  15. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  16. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  17. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol.3(5), 1110–1122 (1985). [CrossRef]
  18. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett.24(21), 1484–1486 (1999). [CrossRef] [PubMed]
  19. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron.34(7), 1098–1108 (1998). [CrossRef]
  20. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt.39(1), 173–182 (2000). [CrossRef] [PubMed]
  21. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys.38(Part 1, No. 10), 6133–6137 (1999). [CrossRef]
  22. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  23. E. G. Ötzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
  24. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A23(11), 2747–2755 (2006). [CrossRef] [PubMed]
  25. M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(Suppl 4), iv43–iv46 (2006). [CrossRef] [PubMed]
  26. H. A. Moneib, S. A. M. Salem, D. G. Aly, H. T. M. Khedr, H. A. Wafaey, and H. E. Hassan, “Assessment of serum vascular endothelial growth factor and nail fold capillaroscopy changes in systemic lupus erythematosus with and without cutaneous manifestations,” J. Dermatol.39(1), 52–57 (2012). [CrossRef] [PubMed]
  27. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12(4), 041205 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited