OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging

Myeong Jin Ju, Young-Joo Hong, Shuichi Makita, Yiheng Lim, Kazuhiro Kurokawa, Lian Duan, Masahiro Miura, Shuo Tang, and Yoshiaki Yasuno  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19412-19436 (2013)
http://dx.doi.org/10.1364/OE.21.019412


View Full Text Article

Enhanced HTML    Acrobat PDF (8308 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated.

© 2013 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(170.3340) Medical optics and biotechnology : Laser Doppler velocimetry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 30, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 16, 2013
Published: August 9, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Myeong Jin Ju, Young-Joo Hong, Shuichi Makita, Yiheng Lim, Kazuhiro Kurokawa, Lian Duan, Masahiro Miura, Shuo Tang, and Yoshiaki Yasuno, "Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging," Opt. Express 21, 19412-19436 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-16-19412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Fujimoto and W. Drexler, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  2. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology113, 1425–1431 (2006). [CrossRef] [PubMed]
  3. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology113, 2054.e1–2054.14 (2006). PMID: PMCID: PMC1939823. [CrossRef] [PubMed]
  4. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, “Three-dimensional imaging of macular holes with high-speed optical coherence tomography,” Ophthalmology114, 763–773 (2007). PMID: . [CrossRef] [PubMed]
  5. T. C. Chen, “Spectral domain optical coherence tomography in glaucoma: Qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (An AOS thesis),” Trans. Am. Ophthalmo. Soc.107, 254–281 (2009). PMID: PMCID: PMC2814580. [PubMed]
  6. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography.” Arch. Ophthalmol.112, 1584–1589 (1994). [CrossRef] [PubMed]
  7. A. R. S. Radhakrishnan, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119, 1179–1185 (2001). [CrossRef] [PubMed]
  8. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37, 958–963 (1997). [CrossRef]
  9. Y. Pan and D. L. Farkas, “Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt3, 446–455 (1998). [CrossRef] [PubMed]
  10. P. J. Tadrous, “Methods for imaging the structure and function of living tissues and cells: 1. optical coherence tomography,” J. Pathol.191, 115–119 (2000). [CrossRef] [PubMed]
  11. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol.7, 1–9 (2001). [CrossRef] [PubMed]
  12. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci.40, 85–94 (2005). [CrossRef] [PubMed]
  13. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, and K. Hoffmann, “In vivo data of epidermal thickness evaluated by optical coherence tomography: Effects of age, gender, skin type, and anatomic site,” J. Dermatol. Sci.44, 145–152 (2006). [CrossRef] [PubMed]
  14. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med.39, 687–695 (2007). [CrossRef] [PubMed]
  15. J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, and W. Sterry, “Application of optical non-invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis,” Skin Res. Technol.13, 119–132 (2007). [CrossRef] [PubMed]
  16. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, “Dental OCT,” Opt. Express3, 230–238 (1998). [CrossRef] [PubMed]
  17. F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, “In vivo OCT imaging of hard and soft tissue of the oral cavity,” Opt. Express3, 239–250 (1998). [CrossRef] [PubMed]
  18. B. T. Amaechi, S. M. Higham, A. G. Podoleanu, J. A. Rogers, and D. A. Jackson, “Use of optical coherence tomography for assessment of dental caries: quantitative procedure,” J. Oral. Rehabil.28, 1092–1093 (2001). [CrossRef]
  19. R. Brandenburg, B. Haller, and C. Hauger, “Real-time in vivo imaging of dental tissue by means of optical coherence tomography (OCT),” Opt. Commun.227, 203–211 (2003). [CrossRef]
  20. J. Izatt, M. Kulkarni, H.-W. Wang, K. Kobayashi, and M.V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Top. Quant.2, 1017–1028 (1996). [CrossRef]
  21. S. Brand, J. M. Poneros, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Optical coherence tomography in the gastrointestinal tract,” Endoscopy32, 796–803 (2000). [CrossRef] [PubMed]
  22. B. Shen, G. Zuccaro, T. L. Gramlich, N. Gladkova, P. Trolli, M. Kareta, C. P. Delaney, J. T. Connor, B. A. Lashner, C. L. Bevins, F. Feldchtein, F. H. Remzi, M. L. Bambrick, and V. W. Fazio, “In vivo colonoscopic optical coherence tomography for transmural inflammation in inflammatory bowel disease,” Clin. Gastroenterol. Hepatol.2, 1080–1087 (2004). [CrossRef] [PubMed]
  23. I.-K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111, 1551–1555 (2005). [CrossRef] [PubMed]
  24. N. Gonzalo, P. W. Serruys, T. Okamura, Z. J. Shen, Y. Onuma, H. M. Garcia-Garcia, G. Sarno, C. Schultz, R. J. v. Geuns, J. Ligthart, and E. Regar, “Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach,” Heart95, 1913–1919 (2009). [CrossRef] [PubMed]
  25. F. Prati, E. Regar, G. S. Mintz, E. Arbustini, C. D. Mario, I.-K. Jang, T. Akasaka, M. Costa, G. Guagliumi, E. Grube, Y. Ozaki, F. Pinto, and P. W. J. Serruys, “Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis,” Eur. Heart J.31, 401–415 (2010). [CrossRef]
  26. T. Yonetsu, T. Kakuta, T. Lee, K. Takayama, K. Kakita, T. Iwamoto, N. Kawaguchi, K. Takahashi, G. Yamamoto, Y. Iesaka, H. Fujiwara, and M. Isobe, “Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography,” Eur. Heart J.31, 1608–1615 (2010). [CrossRef] [PubMed]
  27. T. Kubo, C. Xu, Z. Wang, N. S. v. Ditzhuijzen, and H. G. Bezerra, “Plaque and thrombus evaluation by optical coherence tomography,” Int. J. Cardiovasc. Imaging27, 289–298 (2011). [CrossRef] [PubMed]
  28. Y. Ozaki, H. Kitabata, H. Tsujioka, S. Hosokawa, M. Kashiwagi, K. Ishibashi, K. Komukai, T. Tanimoto, Y. Ino, S. Takarada, T. Kubo, K. Kimura, A. Tanaka, K. Hirata, M. Mizukoshi, T. Imanishi, and T. Akasaka, “Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography,” Circ. J.76, 922–927 (2012). [CrossRef] [PubMed]
  29. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22, 64–66 (1997). [CrossRef] [PubMed]
  30. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express11, 3490–3497 (2003). [CrossRef] [PubMed]
  31. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by fourier-domain color doppler optical coherence tomography.” Opt. Lett.29, 171–173 (2004). [CrossRef] [PubMed]
  32. H. Li, B. A. Standish, A. Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. Yang, “Feasibility of interstitial doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy,” Lasers Surg. Med.38, 754–761 (2006). [CrossRef] [PubMed]
  33. V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18, 2477 (2010). [CrossRef] [PubMed]
  34. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color doppler fourier domain optical coherence tomography,” Opt. Express11, 3116–3121 (2003). [CrossRef] [PubMed]
  35. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2, 1539–1552 (2011). [CrossRef] [PubMed]
  36. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14, 7821–7840 (2006). [CrossRef] [PubMed]
  37. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9, 903–908 (1992). [CrossRef]
  38. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22, 934–936 (1997). [CrossRef] [PubMed]
  39. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett.27, 1803–1805 (2002). [CrossRef]
  40. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express14, 6502–6515 (2006). [CrossRef] [PubMed]
  41. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16, 5892–5906 (2008). [CrossRef] [PubMed]
  42. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express12, 5940–5951 (2004). [CrossRef] [PubMed]
  43. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005). [CrossRef] [PubMed]
  44. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci.49, 2661–2667 (2008). PMID: . [CrossRef] [PubMed]
  45. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17, 3980–3996 (2009). [CrossRef] [PubMed]
  46. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina,” Opt. Express17, 4151–4165 (2009). [CrossRef] [PubMed]
  47. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47, 5487–5494 (2006). PMID: . [CrossRef] [PubMed]
  48. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherencetomography,” Opt. Express16, 16410–16422 (2008). [CrossRef]
  49. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002). [CrossRef]
  50. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45, 2606–2612 (2004). PMID: . [CrossRef] [PubMed]
  51. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15, 2421–2431 (2007). [CrossRef] [PubMed]
  52. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt.12, 041205 (2007). PMID: . [CrossRef] [PubMed]
  53. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13, 014013 (2008). PMID: . [CrossRef] [PubMed]
  54. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.49, 5366–5372 (2008). PMID: . [CrossRef] [PubMed]
  55. J. F. de Boer, T. E. Milner, and J. S. Nelson, “Determination of the depth-resolved stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett.24, 300–302 (1999). [CrossRef]
  56. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and stokes vector determination.” J. Biomed. Opt.7, 359–371 (2002). [CrossRef] [PubMed]
  57. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7, 350–358 (2002). PMID: . [CrossRef] [PubMed]
  58. S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett.28, 1206–1208 (2003). [CrossRef] [PubMed]
  59. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004). [CrossRef] [PubMed]
  60. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix swept source optical coherence tomography for doppler and polarization imaging,” Opt. Lett.37, 1958–1960 (2012). [CrossRef] [PubMed]
  61. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express20, 10229–10241 (2012). [CrossRef] [PubMed]
  62. American National Standards Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2007(American National Standards Institute, New York, 2007).
  63. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13, 10652–10664 (2005). [CrossRef] [PubMed]
  64. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μ m swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007). [CrossRef] [PubMed]
  65. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13, 5483–5493 (2005). [CrossRef] [PubMed]
  66. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express19, 20886–20903 (2011). [CrossRef] [PubMed]
  67. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express20, 2740–2760 (2012). [CrossRef] [PubMed]
  68. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18, 854–876 (2010). [CrossRef] [PubMed]
  69. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18, 13964–13980 (2010). [CrossRef] [PubMed]
  70. Y. Lim, M. Yamanari, S. Fukuda, Y. Kaji, T. Kiuchi, M. Miura, T. Oshika, and Y. Yasuno, “Birefringence measurement of cornea and anterior segment by office-based polarization-sensitive optical coherence tomography,” Biomed. Opt. Express2, 2392–2402 (2011). [CrossRef] [PubMed]
  71. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med15, 1219–1223 (2009). [CrossRef] [PubMed]
  72. K. Kurokawa, K. Sasaki, S. Makita, Y.-J. Hong, and Y. Yasuno, “Three-dimensional retinal and choroidal capillary imaging by power doppler optical coherence angiography with adaptive optics,” Opt. Express20, 22796–22812 (2012). [CrossRef] [PubMed]
  73. J. P. Sarks, S. H. Sarks, and M. C. Killingsworth, “Evolution of geographic atrophy of the retinal pigment epithelium,” Eye2, 552–577 (1988). PMID: . [CrossRef] [PubMed]
  74. R. Klein, M. D. Davis, Y. L. Magli, P. Segal, B. E. Klein, and L. Hubbard, “The wisconsin age-related maculopathy grading system,” Ophthalmology98, 1128–1134 (1991). PMID: . [PubMed]
  75. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes.” Invest. Ophthalmol. Vis. Sci.27, 145–152 (1986). [PubMed]
  76. S. Moon, S.-W. Lee, and Z. Chen, “Reference spectrum extraction and fixed-pattern noise removal in optical coherence tomography,” Opt. Express18, 24395–24404 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited