OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 9 — Oct. 2, 2013

Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing

Kyowon Kim and Thomas E. Murphy  »View Author Affiliations


Optics Express, Vol. 21, Issue 17, pp. 19488-19497 (2013)
http://dx.doi.org/10.1364/OE.21.019488


View Full Text Article

Enhanced HTML    Acrobat PDF (4017 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical waveguides comprised of nanoporous materials are uniquely suited for on-chip sensing applications, because they allow for a target chemical or analyte to directly infiltrate the optical material that comprises the core of the waveguide. We describe here the fabrication and characterization of nanoporous waveguides, and demonstrate their usefulness in measuring small changes in refractive index when exposed to a test analyte. We use a process of electrochemical etching and laser oxidation to produce channel waveguides and integrated on-chip Mach-Zehnder structures, and we compare the responsivity and interferometric stability of the integrated sensor to that of a fiber-based interferometer. We quantify the detection capability by selectively applying isopropanol to a 200 μm length waveguide segment in one arm of the interferometer, which produces a phase shift of 9.7π. The integrated interferometer is shown to provide a more stable response in comparison to a comparable fiber-based implementation.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 4, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: August 2, 2013
Published: August 12, 2013

Virtual Issues
Vol. 8, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kyowon Kim and Thomas E. Murphy, "Porous silicon integrated Mach-Zehnder interferometer waveguide for biological and chemical sensing," Opt. Express 21, 19488-19497 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-17-19488


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection ofbiomolecules in aqueous solutions,” Opt. Lett.29, 1974–1976 (2004). [CrossRef] [PubMed]
  2. C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron.15, 579–589 (2000). [CrossRef]
  3. M.-L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors9, 7398–7411 (2009). [CrossRef] [PubMed]
  4. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett.30, 1273–1275 (2005). [CrossRef] [PubMed]
  5. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett.29, 1894–1896 (2004). [CrossRef] [PubMed]
  6. V. J. Cadarso, C. Fernández-Sánchez, A. Llobera, M. Darder, and C. Domínguez, “Optical biosensor based on hollow integrated waveguides,” Anal. Chem.80, 3498–3501 (2008). [CrossRef] [PubMed]
  7. J. Gao, T. Gao, Y. Y. Li, and M. J. Sailor, “Vapor sensors based on optical interferometry from oxidized microporous silicon films,” Langmuir18, 2229–2233 (2002). [CrossRef]
  8. L. D. Stefano, L. Rotiroti, I. Rea, L. Moretti, G. D. Francia, E. Massera, A. Lamberti, P. Arcari, C. Sanges, and I. Rendina, “Porous silicon-based optical biochips,” J. Opt. A: Pure Appl. Opt.8, S540 (2006). [CrossRef]
  9. P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon bragg mirrors,” J. Appl. Phys.86, 1781–1784 (1999). [CrossRef]
  10. M. A. Anderson, A. Tinsley-Bown, P. Allcock, E. A. Perkins, P. Snow, M. Hollings, R. G. Smith, C. Reeves, D. J. Squirrell, S. Nicklin, and T. I. Cox, “Sensitivity of the optical properties of porous silicon layers to the refractive index of liquid in the pores,” Phys. Status Solidi A197, 528–533 (2003). [CrossRef]
  11. S. Chan, P. Fauchet, Y. Li, L. Rothberg, and B. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A182, 541–546 (2000). [CrossRef]
  12. L. D. Stefano, I. Rendina, L. Moretti, and A. M. Rossi, “Optical sensing of flammable substances using porous silicon microcavities,” Mater. Sci. Eng. B100, 271–274 (2003). [CrossRef]
  13. L. D. Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A. M. Rossi, P. Arcari, and I. Rendina, “Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology,” IEEE Trans. Nanotechnol.3, 49–54 (2004). [CrossRef]
  14. L. A. DeLouise, P. M. Kou, and B. L. Miller, “Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. insights into biosensor sensitivity,” Anal. Chem.77, 3222–3230 (2005). [CrossRef] [PubMed]
  15. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron.44, 89–94 (2013). [CrossRef] [PubMed]
  16. R. Liu, T. A. Schmedake, Y. Y. Li, M. J. Sailor, and Y. Fainman, “Novel porous silicon vapor sensor based on polarization interferometry,” Sens. Actuators B87, 58–62 (2002). [CrossRef]
  17. J. Álvarez, P. Bettotti, I. Suárez, N. Kumar, D. Hill, V. Chirvony, L. Pavesi, and J. Martínez-Pastor, “Birefringent porous silicon membranes for optical sensing,” Opt. Express19, 26106–26116 (2011). [CrossRef]
  18. E. De Tommasi, L. D. Stefano, I. Rea, V. Di Sarno, L. Rotiroti, P. Arcari, A. Lamberti, C. Sanges, and I. Rendina, “Porous silicon based resonant mirrors for biochemical sensing,” Sensors8, 6549–6556 (2008). [CrossRef]
  19. I. Rea, M. Iodice, G. Coppola, I. Rendina, A. Marino, and L. D. Stefano, “A porous silicon-based bragg grating waveguide sensor for chemical monitoring,” Sens. Actuators B139, 39–43 (2009). [CrossRef]
  20. G. Rong, “Highly sensitive porous silicon membrane waveguide sensor using ultra-high order mode,” in “Symp. Photonics Optoelectron.”, (2009), pp. 1–4.
  21. Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron.25, 1535–1538 (2010). [CrossRef]
  22. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19, 11330–11339 (2011). [CrossRef] [PubMed]
  23. A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, “Porous silicon multilayer optical waveguides,” Thin Solid Films276, 143–146 (1996). [CrossRef]
  24. J. Charrier, C. Lupi, L. Haji, and C. Boisrobert, “Optical study of porous silicon buried waveguides fabricated from p-type silicon,” Mater. Sci. Semicond. Process.3, 357–361 (2000). [CrossRef]
  25. P. Pirasteh, J. Charrier, Y. Dumeige, P. Joubert, S. Haesaert, and L. Haji, “Further results on porous silicon optical waveguides at 1.55 μ m,” Phys. Status Solidi A204, 1346–1350 (2007). [CrossRef]
  26. M. Hiraoui, M. Guendouz, N. Lorrain, L. Haji, and M. Oueslati, “Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure,” Appl. Phys. Lett.101, 191114 (2012).
  27. A. M. Rossi, G. Amato, V. Camarchia, L. Boarino, and S. Borini, “High-quality porous-silicon buried waveguides,” Appl. Phys. Lett.78, 3003–3005 (2001). [CrossRef]
  28. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37, 256–258 (2012). [CrossRef] [PubMed]
  29. G. Rong, J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, “Label-free porous silicon membrane waveguide for dna sensing,” Appl. Phys. Lett.93, 161109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (579 KB)     
» Media 2: AVI (913 KB)     
» Media 3: AVI (580 KB)     
» Media 4: AVI (816 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited