OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy

M. Köhring, S. Böttger, U. Willer, and W. Schade  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20911-20922 (2013)
http://dx.doi.org/10.1364/OE.21.020911


View Full Text Article

Enhanced HTML    Acrobat PDF (2836 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Temperature dependent measurements with a compact fiber coupled sensor for trace gas detection in the near-infrared based on tuning fork enhanced interferometric photoacoustic spectroscopy are presented. The temperature effects on the sensor have been investigated in a range from T = −41°C to T = 107°C, in particular the influence on the resonance frequency and the Q-factor of the micro tuning fork. The refined sensor head contains a combination of a silicon tuning fork and an acoustic off-beam resonator and permits methane detection with a detection limit of S = (3.85 ± 0.01) ppm. The functional capability of a numerical model for the optimization of acoustic off-beam resonators in COMSOL Multiphysics® is presented.

© 2013 OSA

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:
Spectroscopy

History
Original Manuscript: April 8, 2013
Revised Manuscript: May 16, 2013
Manuscript Accepted: May 17, 2013
Published: August 30, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
M. Köhring, S. Böttger, U. Willer, and W. Schade, "Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy," Opt. Express 21, 20911-20922 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-18-20911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002). [CrossRef] [PubMed]
  2. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum.76(4), 043105 (2005). [CrossRef]
  3. A. A. Kosterev, L. Dong, D. Thomazy, F. K. Tittel, and S. Overby, “QEPAS for chemical analysis of multi-component gas mixtures,” Appl. Phys. B101(3), 649–659 (2010). [CrossRef]
  4. K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, and X. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.34(10), 1594–1596 (2009). [CrossRef] [PubMed]
  5. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B100(3), 627–635 (2010). [CrossRef]
  6. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat.110(9-10), 533–572 (2009). [CrossRef]
  7. M. Köhring, A. Pohlkötter, U. Willer, M. Angelmahr, and W. Schade, “Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis,” Appl. Phys. B102(1), 133–139 (2011). [CrossRef]
  8. K. Liu, H. Yi, A. A. Kosterev, W. Chen, L. Dong, L. Wang, T. Tan, W. Zhang, F. K. Tittel, and X. Gao, “Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation,” Rev. Sci. Instrum.81(10), 103103 (2010). [CrossRef] [PubMed]
  9. S. L. Firebaugh, F. Roignant, and E. A. Terray, “Enhancing Sensitivity in Tuning Fork Photoacoustic Spectroscopy Systems,” Sensors Applications Symposium (SAS) (2010). [CrossRef]
  10. M. Köhring, U. Willer, S. Böttger, A. Pohlkötter, and W. Schade, “Fiber Coupled Ozone Sensor Based on Tuning Fork Enhanced Interferometric Photoacoustic Spectroscopy,” IEEE J. Sel. Top. Quantum Electron.18(5), 1566–1572 (2012). [CrossRef]
  11. L. Dong, K. Liu, A. A. Kosterev, and F. K. Tittel, “Effect of Speed of Sound on Quartz-Enhanced Photoacoustic Spectroscopy Trace Gas Sensor Performance,” CLEO:2011 - Laser Applications to Photonic Applications: OSA, paper CThCC5 (2011).
  12. S. Böttger, M. Köhring, U. Willer, and W. Schade, “Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy with LEDs,” Appl. Phys. B (to be published).
  13. G. Stemme, “Resonant silicon sensors,” J. Micromech. Microeng.1(2), 113–125 (1991). [CrossRef]
  14. M. L. Nandanpawar and S. Rajagopalan, “Wachtman’s equation and temperature dependence of bulk moduli in solids,” J. Appl. Phys.49(7), 3976 (1978). [CrossRef]
  15. J. B. Wachtman, W. E. Tefft, D. G. Lam, and C. S. Apstein, “Exponential Temperature Dependence of Young's Modulus for Several Oxides,” Phys. Rev.122(6), 1754–1759 (1961). [CrossRef]
  16. Y. P. Varshni, “Temperature Dependence of the Elastic Constants,” Phys. Rev. B2(10), 3952–3958 (1970). [CrossRef]
  17. U. Gysin, S. Rast, P. Ruff, E. Meyer, D. Lee, P. Vettiger, and C. Gerber, “Temperature dependence of the force sensitivity of silicon cantilevers,” Phys. Rev. B69(4), 045403 (2004). [CrossRef]
  18. N. Ono, K. Kitamura, K. Nakajima, and Y. Shimanuki, “Measurement of Young's Modulus of Silicon Single Crystal at High Temperature and Its Dependency on Boron Concentration Using the Flexural Vibration Method,” Jpn. J. Appl. Phys.39(Part 1, No. 2A), 368–371 (2000). [CrossRef]
  19. J. J. Wortman and R. A. Evans, “Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium,” J. Appl. Phys.36(1), 153–156 (1965). [CrossRef]
  20. D. R. França and A. Blouin, “All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes,” Meas. Sci. Technol.15(5), 859–868 (2004). [CrossRef]
  21. M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the Young's Modulus of Silicon?” J. Microelectromech. Syst.19(2), 229–238 (2010). [CrossRef]
  22. J. Kim, D. Cho, and R. S. Muller, “Why is (111) silicon a better mechanical material for MEMS?” Proc. Transducers (2001).
  23. C. Kittel, “Introduction to Solid State Physics,” 8th ed. Hoboken, New Jersey, USA: John Wiley & Sons, Ltd. (2004).
  24. W. E. Newell, “Miniaturization of Tuning Forks,” Science161(3848), 1320–1326 (1968). [CrossRef] [PubMed]
  25. Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum.78(6), 063704 (2007). [CrossRef] [PubMed]
  26. H. Yi, W. Chen, S. Sun, K. Liu, T. Tan, and X. Gao, “T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor,” Opt. Express20(8), 9187–9196 (2012). [CrossRef] [PubMed]
  27. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Effective Utilization of Quantum-Cascade Distributed-Feedback Lasers in Absorption Spectroscopy,” Appl. Opt.39(24), 4425–4430 (2000). [CrossRef] [PubMed]
  28. A. Grossel, V. Zeninari, L. Joly, B. Parvitte, D. Courtois, and G. Durry, “New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers,” Spectrochim. Acta A Mol. Biomol. Spectrosc.63(5), 1021–1028 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited