OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges

Dmitry Khoptyar, Arman Ahamed Subash, Sören Johansson, Muhammad Saleem, Anders Sparén, Jonas Johansson, and Stefan Andersson-Engels  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 20941-20953 (2013)
http://dx.doi.org/10.1364/OE.21.020941


View Full Text Article

Enhanced HTML    Acrobat PDF (2169 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present extended spectroscopic analysis of pharmaceutical tablets in the close near infrared spectral range performed using broadband photon time-of-flight (PTOF) absorption and scattering spectra measurements. We show that the absorption spectra can be used to perform evaluation of the chemical composition of pharmaceutical tablets without need for chemo-metric calibration. The spectroscopic analysis was performed using an advanced PTOF spectrometer operating in the 650 to 1400 nm spectral range. By employing temporal stabilization of the system we achieve the high precision of 0.5% required to evaluate the concentration of tablet ingredients. In order to further illustrate the performance of the system, we present the first ever reported broadband evaluation of absorption and scattering spectra from pure and doped Spectralon®.

© 2013 OSA

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.1030) Spectroscopy : Absorption
(300.6190) Spectroscopy : Spectrometers
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Spectroscopy

History
Original Manuscript: May 30, 2013
Revised Manuscript: August 5, 2013
Manuscript Accepted: August 12, 2013
Published: August 30, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Dmitry Khoptyar, Arman Ahamed Subash, Sören Johansson, Muhammad Saleem, Anders Sparén, Jonas Johansson, and Stefan Andersson-Engels, "Broadband photon time-of-flight spectroscopy of pharmaceuticals and highly scattering plastics in the VIS and close NIR spectral ranges," Opt. Express 21, 20941-20953 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-18-20941


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010). [CrossRef]
  2. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010). [CrossRef] [PubMed]
  3. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007). [CrossRef] [PubMed]
  4. A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012). [CrossRef]
  5. D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012). [CrossRef]
  6. Q. Luo, B. Li, Z. Qiu, Z. Huang, Y. Gu, and X. D. Li, “Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy,” Proc. SPIE 8553, 85530F (2012).
  7. D. W. Sun, Infrared Spectroscopy for Food Quality Analysis and Control (Elsevier 2009).
  8. L. Čurda and O. Kukačková, “NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture,” J. Food Eng.61(4), 557–560 (2004). [CrossRef]
  9. H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008). [CrossRef]
  10. B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007). [CrossRef]
  11. M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal.66, 1–10 (2012). [CrossRef] [PubMed]
  12. J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007). [CrossRef] [PubMed]
  13. G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005). [CrossRef] [PubMed]
  14. Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007). [CrossRef] [PubMed]
  15. S. Tsuchikawa, “A Review of Recent Near Infrared Research for Wood and Paper,” Appl. Spectrosc. Rev.42(1), 43–71 (2007). [CrossRef]
  16. S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013). [CrossRef]
  17. L. X. Yu, “Pharmaceutical quality by design: product and process development, understanding, and control,” Pharm. Res.25(4), 781–791 (2008). [CrossRef] [PubMed]
  18. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999). [CrossRef] [PubMed]
  19. R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010). [CrossRef] [PubMed]
  20. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt.39(34), 6487–6497 (2000). [CrossRef] [PubMed]
  21. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011). [CrossRef] [PubMed]
  22. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000). [CrossRef]
  23. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007). [CrossRef] [PubMed]
  24. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000). [CrossRef] [PubMed]
  25. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express12(17), 4103–4112 (2004). [CrossRef] [PubMed]
  26. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett.29(20), 2405–2407 (2004). [CrossRef] [PubMed]
  27. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007). [CrossRef] [PubMed]
  28. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009). [CrossRef] [PubMed]
  29. S. Tsuchikawa and S. Tsutsumi, “Application of time-of-flight near-infrared Spectroscopy to wood with anisotropic cellular structure,” Appl. Spectrosc.56(7), 869–876 (2002). [CrossRef]
  30. I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc.66(8), 944–950 (2012). [CrossRef] [PubMed]
  31. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc.56(6), 725–731 (2002). [CrossRef]
  32. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005). [CrossRef] [PubMed]
  33. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001). [CrossRef] [PubMed]
  34. J. P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method,” Opt. Express18(11), 11495–11507 (2010). [CrossRef] [PubMed]
  35. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Non-invasive Measurement of Tissue Optical Properties,” Appl. Opt.28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  36. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997). [CrossRef] [PubMed]
  37. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008). [CrossRef] [PubMed]
  38. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express16(14), 10440–10454 (2008). [CrossRef] [PubMed]
  39. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005). [CrossRef] [PubMed]
  40. A. Sparén, O. Svensson, M. Hartman, M. Fransson, and J. Johansson, “Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets, Using Transmission Raman and NIR Spectroscopy,” Appl. Spectrosc., to be submited (2013).
  41. LabSphere, Inc. “A Guide to Reflectance Coatings and Materials.”
  42. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009). [CrossRef] [PubMed]
  43. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. xiv, 530 p.
  44. H. C. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981), p. 470 p.
  45. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced Light-Scattering Properties for Mixtures of Spherical Particles: a Simple Approximation Derived from Mie Calculations,” Appl. Opt.31(10), 1370–1376 (1992). [CrossRef] [PubMed]
  46. LabSphere, Inc.”, retrieved http://www.labsphere.com/ .
  47. Avian Technologies, LLC”, retrieved http://www.aviantechnologies.com .
  48. SphereOptics Gmbh”, retrieved http://www.sphereoptics.de/en/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited