OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging

Krista Jansen, Min Wu, Antonius F. W. van der Steen, and Gijs van Soest  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21472-21484 (2013)
http://dx.doi.org/10.1364/OE.21.021472


View Full Text Article

Enhanced HTML    Acrobat PDF (2502 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The presence of lipids in atherosclerotic coronary lesions is an important determinant of their potential to trigger acute coronary events. Spectroscopic intravascular photoacoustic imaging (sIVPA) has the potential to automatically detect lipids in atherosclerotic lesions. For real-time in vivo imaging, limiting the number of excitation wavelengths is crucial. We explored methods for plaque lipid detection using sIVPA, with the aim to minimize the number of laser pulses per image line. A combined intravascular ultrasound (IVUS) and photoacoustic imaging system was used to image a vessel phantom and human coronary arteries ex vivo. We acquired co-registered cross-sectional images at several wavelengths near 1200 nm, a lipid-specific absorption band. Correlating the photoacoustic spectra at 6 or 3 wavelengths from 1185 to 1235 nm with the absorption spectrum of cholesterol and peri-adventitial tissue, we could detect and differentiate the lipids in the atherosclerotic plaque and peri-adventitial lipids, respectively. With two wavelengths, both plaque and peri-adventitial lipids were detected but could not be distinguished.

© 2013 OSA

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.7170) Medical optics and biotechnology : Ultrasound
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 21, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: August 25, 2013
Published: September 5, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Krista Jansen, Min Wu, Antonius F. W. van der Steen, and Gijs van Soest, "Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging," Opt. Express 21, 21472-21484 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-18-21472


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Global atlas on cardiovascular disease prevention and control.,” (World Health Organization, Geneva, 2011).
  2. E. Falk, P. K. Shah, and V. Fuster, “Coronary Plaque Disruption,” Circulation92(3), 657–671 (1995). [CrossRef] [PubMed]
  3. J. A. Schaar, J. E. Muller, E. Falk, R. Virmani, V. Fuster, P. W. Serruys, A. Colombo, C. Stefanadis, S. Ward Casscells, P. R. Moreno, A. Maseri, and A. F. W. van der Steen, “Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque,” Eur. Heart J.25(12), 1077–1082 (2004). [CrossRef] [PubMed]
  4. R. Virmani, F. D. Kolodgie, A. P. Burke, A. Farb, and S. M. Schwartz, “Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions,” Arterioscler. Thromb. Vasc. Biol.20(5), 1262–1275 (2000). [CrossRef] [PubMed]
  5. P. D. Richardson, M. J. Davies, and G. V. Born, “Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques,” Lancet334(8669), 941–944 (1989). [CrossRef] [PubMed]
  6. C. V. Felton, D. Crook, M. J. Davies, and M. F. Oliver, “Relation of Plaque Lipid Composition and Morphology to the Stability of Human Aortic Plaques,” Arterioscler. Thromb. Vasc. Biol.17(7), 1337–1345 (1997). [CrossRef] [PubMed]
  7. C. L. Korte, A. F. W. Steen, E. I. Cépedes, G. Pasterkamp, S. G. Carlier, F. Mastik, A. H. Schoneveld, P. W. Serruys, and N. Bom, “Characterization of plaque components and vulnerability with intravascular ultrasound elastography,” Phys. Med. Biol.45(6), 1465–1475 (2000). [CrossRef] [PubMed]
  8. A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation106(17), 2200–2206 (2002). [CrossRef] [PubMed]
  9. T. Thim, M. K. Hagensen, D. Wallace-Bradley, J. F. Granada, G. L. Kaluza, L. Drouet, W. P. Paaske, H. E. Bøtker, and E. Falk, “Unreliable assessment of necrotic core by Virtual Histology intravascular ultrasound in porcine coronary artery disease,” Circ Cardiovasc Imaging3(4), 384–391 (2010). [CrossRef] [PubMed]
  10. J. F. Granada, D. Wallace-Bradley, H. K. Win, C. L. Alviar, A. Builes, E. I. Lev, R. Barrios, D. G. Schulz, A. E. Raizner, and G. L. Kaluza, “In vivo plaque characterization using intravascular ultrasound-virtual histology in a porcine model of complex coronary lesions,” Arterioscler. Thromb. Vasc. Biol.27(2), 387–393 (2006). [CrossRef] [PubMed]
  11. E. S. Shin, H. M. Garcia-Garcia, J. M. Ligthart, K. Witberg, C. Schultz, A. F. van der Steen, and P. W. Serruys, “In vivo findings of tissue characteristics using iMap™ IVUS and Virtual Histology™ IVUS,” EuroIntervention6(8), 1017–1019 (2011). [CrossRef] [PubMed]
  12. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt.15(1), 011105 (2010). [CrossRef] [PubMed]
  13. C. M. Gardner, J. Lisauskas, E. L. Hull, H. Tan, S. Sum, T. Meese, C. Jiang, S. Madden, J. Caplan, and J. E. Muller, “A catheter-based near-infrared scanning spectroscopy system for imaging lipid-rich plaques in human coronary arteries in vivo,” Proc. SPIE67650, 67650G, 67650G-8 (2007). [CrossRef]
  14. S. Garg, P. W. Serruys, M. van der Ent, C. Schultz, F. Mastik, G. van Soest, A. F. van der Steen, M. A. Wilder, J. E. Muller, and E. Regar, “First use in patients of a combined near infra-red spectroscopy and intra-vascular ultrasound catheter to identify composition and structure of coronary plaque,” EuroIntervention5(6), 755–756 (2010). [CrossRef] [PubMed]
  15. D. Razansky, C. Vinegoni, and V. Ntziachristos, “Multispectral photoacoustic imaging of fluorochromes in small animals,” Opt. Lett.32(19), 2891–2893 (2007). [CrossRef] [PubMed]
  16. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol.52(1), 141–168 (2007). [CrossRef] [PubMed]
  17. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett.36(5), 597–599 (2011). [CrossRef] [PubMed]
  18. B. Wang, A. Karpiouk, D. Yeager, J. Amirian, S. Litovsky, R. Smalling, and S. Emelianov, “In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis,” Ultrasound Med. Biol.38(12), 2098–2103 (2012). [CrossRef] [PubMed]
  19. T. J. Allen, A. Hall, A. P. Dhillon, J. S. Owen, and P. C. Beard, “Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range,” J. Biomed. Opt.17(6), 061209–061210 (2012). [CrossRef] [PubMed]
  20. H. W. Wang, N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, “Label-free bond-selective imaging by listening to vibrationally excited molecules,” Phys. Rev. Lett.106(23), 238106 (2011). [CrossRef] [PubMed]
  21. K. Jansen, G. Springeling, C. Lancee, R. Beurskens, F. Mastik, A. F. W. van der Steen, and G. van Soest, “An intravascular photoacoustic imaging catheter,” in International Ultrasonics Symposium (IUS), 2010 IEEE, 2010), 378–381.
  22. Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri, M. S. Humayun, P. Han, and K. K. Shung, “PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(3), 668–675 (2007). [CrossRef] [PubMed]
  23. C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng.21, 7–14 (2001).
  24. B. Lundberg, “Chemical composition and physical state of lipid deposits in atherosclerosis,” Atherosclerosis56(1), 93–110 (1985). [CrossRef] [PubMed]
  25. C. Stegemann, I. Drozdov, J. Shalhoub, J. Humphries, C. Ladroue, A. Didangelos, M. Baumert, M. Allen, A. H. Davies, C. Monaco, A. Smith, Q. Xu, and M. Mayr, “Comparative lipidomics profiling of human atherosclerotic plaques,” Circ Cardiovasc Genet4(3), 232–242 (2011). [CrossRef] [PubMed]
  26. P. Wang, P. Wang, H.-W. Wang, and J.-X. Cheng, “Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration,” J. Biomed. Opt.17(9), 096010 (2012). [CrossRef] [PubMed]
  27. J. Glatz, N. C. Deliolanis, A. Buehler, D. Razansky, and V. Ntziachristos, “Blind source unmixing in multi-spectral optoacoustic tomography,” Opt. Express19(4), 3175–3184 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited