OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Optical near-field–mediated polarization asymmetry induced by two-layer nanostructures

Makoto Naruse, Naoya Tate, Yasuyuki Ohyagi, Morihisa Hoga, Tsutomu Matsumoto, Hirokazu Hori, Aurélien Drezet, Serge Huant, and Motoichi Ohtsu  »View Author Affiliations

Optics Express, Vol. 21, Issue 19, pp. 21857-21870 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2230 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that a two-layer shape-engineered nanostructure exhibits asymmetric polarization conversion efficiency thanks to near-field interactions. We present a rigorous theoretical foundation based on an angular-spectrum representation of optical near-fields that takes account of the geometrical features of the proposed device architecture and gives results that agree well with electromagnetic numerical simulations. The principle used here exploits the unique intrinsic optical near-field processes associated with nanostructured matter, while eliminating the need for conventional scanning optical fiber probing tips, paving the way to novel nanophotonic devices and systems.

© 2013 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(160.4236) Materials : Nanomaterials
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Physical Optics

Original Manuscript: June 12, 2013
Revised Manuscript: August 3, 2013
Manuscript Accepted: September 3, 2013
Published: September 10, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Makoto Naruse, Naoya Tate, Yasuyuki Ohyagi, Morihisa Hoga, Tsutomu Matsumoto, Hirokazu Hori, Aurélien Drezet, Serge Huant, and Motoichi Ohtsu, "Optical near-field–mediated polarization asymmetry induced by two-layer nanostructures," Opt. Express 21, 21857-21870 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, “Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,” IEEE J. Sel. Top. Quantum Electron.8(4), 839–862 (2002). [CrossRef]
  2. A. Cuche, A. Drezet, Y. Sonnefraud, O. Faklaris, F. Treussart, J.-F. Roch, and S. Huant, “Near-field optical microscopy with a nanodiamond-based single-photon tip,” Opt. Express17(22), 19969–19980 (2009). [CrossRef] [PubMed]
  3. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007). [CrossRef] [PubMed]
  4. K. Akahane, N. Yamamoto, and M. Tsuchiya, “Highly stacked quantum-dot laser fabricated using a strain compensation technique,” Appl. Phys. Lett.93(4), 041121 (2008). [CrossRef]
  5. M. Naruse, N. Tate, M. Aono, and M. Ohtsu, “Information physics fundamentals of nanophotonics,” Rep. Prog. Phys.76(5), 056401 (2013). [CrossRef] [PubMed]
  6. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett.90(22), 223110 (2007). [CrossRef]
  7. C. Pistol, C. Dwyer, and A. R. Lebeck, “Nanoscale optical computing using resonance energy transfer logic,” IEEE Micro28(6), 7–18 (2008). [CrossRef]
  8. M. Naruse, M. Aono, S.-J. Kim, T. Kawazoe, W. Nomura, H. Hori, M. Hara, and M. Ohtsu, “Spatiotemporal dynamics in optical energy transfer on the nanoscale and its application to constraint satisfaction problems,” Phys. Rev. B86(12), 125407 (2012). [CrossRef]
  9. M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu, and M. Hara, “Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics,” Langmuir29(24), 7557–7564 (2013). [CrossRef] [PubMed]
  10. M. Naruse, N. Tate, and M. Ohtsu, “Optical security based on near-field processes at the nanoscale,” J. Opt.14(9), 094002 (2012). [CrossRef]
  11. N. Tate, H. Sugiyama, M. Naruse, W. Nomura, T. Yatsui, T. Kawazoe, and M. Ohtsu, “Quadrupole-dipole transform based on optical near-field interactions in engineered nanostructures,” Opt. Express17(13), 11113–11121 (2009). [CrossRef] [PubMed]
  12. N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, and M. Ohtsu, “Nanophotonic code embedded in embossed hologram for hierarchical information retrieval,” Opt. Express18(7), 7497–7505 (2010). [CrossRef] [PubMed]
  13. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008). [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  15. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchical hologram based on optical near- and far-field responses,” Opt. Express16(2), 607–612 (2008). [CrossRef] [PubMed]
  16. G. L. J. A. Rikken and E. Raupach, “Observation of magneto-chiral dichroism,” Nature390(6659), 493–494 (1997). [CrossRef]
  17. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003). [CrossRef] [PubMed]
  18. T. Vallius, K. Jeffimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett.83(2), 234–236 (2003). [CrossRef]
  19. W. Zhang, A. Potts, A. Papakostas, and D. M. Bagnall, “Intensity modulation and polarization rotation of visible light by dielectric planar chiral materials,” Appl. Phys. Lett.86(23), 231905 (2005). [CrossRef]
  20. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  21. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  22. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  23. D. W. Pohl and D. Courjon, Near Field Optics, (Kluwer Academic, 1993).
  24. E. Wolf and M. Nieto-Vesperinas, “Analyticity of the angular spectrum amplitude of scattered fields and some of its consequences,” J. Opt. Soc. Am. A2(6), 886–889 (1985). [CrossRef]
  25. T. Inoue and H. Hori, “Quantum theory of radiation in optical near field based on quantization of evanescent electromagnetic waves using detector mode,” in Progress in Nano-Electro-Optics IV, M. Ohtsu ed. (Springer, 2005), pp. 127–199.
  26. M. Naruse, T. Inoue, and H. Hori, “Analysis and synthesis of hierarchy in optical near-field interactions at the nanoscale based on angular spectrum,” Jpn. J. Appl. Phys.46(9A), 6095–6103 (2007). [CrossRef]
  27. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-objects,” Europhys. Lett.64(5), 634–640 (2003). [CrossRef]
  28. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip?” Opt. Commun.284(5), 1444–1450 (2011). [CrossRef]
  29. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik ed. (Academic, 1985), pp. 275–367.
  30. M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys.103(11), 113525 (2008). [CrossRef]
  31. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A82(5), 053811 (2010). [CrossRef]
  32. G. R. Fowles, Introduction to Modern Optics (Dover Publications, 1989).
  33. A. Drezet and C. Genet, “Reciprocity and optical chirality,” in Singular and Chiral Nanoplasmonics, N. Zheludev and S. V. Boriskina, eds. (Pan Stanford Publishing), in press.
  34. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  35. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012). [CrossRef]
  36. S. V. Zhukovsky, C. Kremers, and D. N. Chigrin, “Plasmonic rod dimers as elementary planar chiral meta-atoms,” Opt. Lett.36(12), 2278–2280 (2011). [CrossRef] [PubMed]
  37. D. N. Chigrin, C. Kremers, and S. V. Zhukovsky, “Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials,” Appl. Phys. B105(1), 81–97 (2011). [CrossRef]
  38. H. Matsumoto and T. Matsumoto, “Clone match rate evaluation for an artifact-metric system,” IPSJ J.44, 1991–2001 (2003).
  39. T. Matsumoto, K. Hanaki, R. Suzuki, D. Sekiguchi, M. Hoga, Y. Ohyagi, M. Naruse, N. Tate, and M. Ohtsu, “A nano artifact-metric system leveraging resist collapsing in electron beam lithography,” submitted.
  40. N. Guth, B. Gallas, J. Rivory, J. Grand, A. Ourir, G. Guida, R. Abdeddaim, C. Jouvaud, and J. de Rosny, “Optical properties of metamaterials: influence of electric multipoles, magnetoelectric coupling, and spatial dispersion,” Phys. Rev. B85(11), 115138 (2012). [CrossRef]
  41. Y. Tomaru, S. Hakuta, T. Tani, and M. Naya, “Optical properties of nano silver pavement,” in Extended Abstracts of the 73rd Autumn Meeting,2012 (The Japan Society of Applied Physics, 2012), p. 03–152.
  42. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited