OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria

Steven C. Hill, Yong-Le Pan, Chatt Williamson, Joshua L. Santarpia, and Hanna H. Hill  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22285-22313 (2013)
http://dx.doi.org/10.1364/OE.21.022285


View Full Text Article

Enhanced HTML    Acrobat PDF (1365 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B6 and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.

© 2013 OSA

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(160.2540) Materials : Fluorescent and luminescent materials
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(290.1090) Scattering : Aerosol and cloud effects
(290.5850) Scattering : Scattering, particles
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 30, 2013
Revised Manuscript: July 19, 2013
Manuscript Accepted: July 20, 2013
Published: September 13, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Steven C. Hill, Yong-Le Pan, Chatt Williamson, Joshua L. Santarpia, and Hanna H. Hill, "Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria," Opt. Express 21, 22285-22313 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-19-22285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012). [CrossRef]
  2. S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009). [CrossRef]
  3. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd ed. (Wiley-Interscience, 2006), especially Chap. 24, and Fig. 23.12 with its error bar of 2 W/m2 for tropospheric aerosol indirect effects.
  4. J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013). [CrossRef] [PubMed]
  5. G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976). [CrossRef]
  6. C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010). [CrossRef]
  7. C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012). [CrossRef]
  8. A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011). [CrossRef]
  9. J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010). [CrossRef]
  10. J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012). [CrossRef]
  11. R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007). [CrossRef]
  12. A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011). [CrossRef]
  13. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997). [CrossRef] [PubMed]
  14. M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998). [CrossRef] [PubMed]
  15. V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004). [CrossRef] [PubMed]
  16. V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011). [CrossRef] [PubMed]
  17. R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002). [CrossRef]
  18. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995). [CrossRef]
  19. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express13(22), 8969–8979 (2005). [CrossRef] [PubMed]
  20. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009). [CrossRef] [PubMed]
  21. V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004). [CrossRef]
  22. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011). [CrossRef]
  23. K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010). [CrossRef]
  24. D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011). [CrossRef]
  25. A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003). [CrossRef]
  26. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007). [CrossRef]
  27. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997). [CrossRef] [PubMed]
  28. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999). [CrossRef]
  29. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999). [CrossRef]
  30. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005). [CrossRef] [PubMed]
  31. D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012). [CrossRef]
  32. N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013). [CrossRef]
  33. E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013). [CrossRef]
  34. F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013). [CrossRef]
  35. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010). [CrossRef] [PubMed]
  36. F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947). [CrossRef] [PubMed]
  37. J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012). [CrossRef] [PubMed]
  38. C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011). [CrossRef] [PubMed]
  39. E. J. D’Sa and S. E. Lohrenz, “Theoretical treatment of fluorescence detection by a dual-fiber-optic sensor with consideration of sampling variability and package effects associated with particles,” Appl. Opt.38(12), 2524–2535 (1999). [CrossRef] [PubMed]
  40. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001). [CrossRef] [PubMed]
  41. S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004). [CrossRef] [PubMed]
  42. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976). [CrossRef]
  43. I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt.41(27), 5783–5791 (2002). [CrossRef] [PubMed]
  44. V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002). [CrossRef]
  45. M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008). [CrossRef] [PubMed]
  46. J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985). [PubMed]
  47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  48. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  49. N. Velesco, T. Kaiser, and G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt.36(33), 8724–8728 (1997). [CrossRef] [PubMed]
  50. N. Velesco and G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt.38(6), 1046–1052 (1999). [CrossRef] [PubMed]
  51. M. I. Mishchenko, L. D. Tracis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002), p. 294, and Chap. 6.
  52. S. C. Hill, “Method for integrating the absorption cross sections of spheres over wavelength or diameter,” Appl. Opt.42(21), 4381–4388 (2003). [CrossRef] [PubMed]
  53. F. C. Neidhardt and H. E. Umbarger, “Chemical Composition of Escherichia coli,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1, F. C. Neidhardt, ed. in chief. (ASM, 1996), Chap. 3.
  54. B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009). [CrossRef] [PubMed]
  55. W. G. Murrell, “Composition of spores and spore structures,” in G. W. Gould and A. Hurst, eds., The Bacterial Spore, (Academic, 1969), Chap. 3.
  56. P. Setlow and E. A. Johnson, “Spores and their significance,” in M. P. Doyle, L. R. Beuchat, and T. J. Montville, eds., Food Microbiology: Fundamentals and Frontiers, 2nd ed., (ASM, 1997), p. 40, Table 3.1.
  57. D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970). [PubMed]
  58. M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012). [CrossRef] [PubMed]
  59. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997). [CrossRef] [PubMed]
  60. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003). [CrossRef] [PubMed]
  61. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001). [CrossRef] [PubMed]
  62. N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996). [CrossRef] [PubMed]
  63. P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974). [PubMed]
  64. P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends Microbiol.15(4), 172–180 (2007). [CrossRef] [PubMed]
  65. J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966). [CrossRef] [PubMed]
  66. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983), pp. 341–343.
  67. J. W. Longworth, “Luminescence of Polypeptides and Proteins,” in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Weinryb, eds. (Plenum, 1971), pp. 319–484.
  68. S. F. Verlick, “Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes,” J. Biol. Chem.233(6), 1455–1467 (1958). [PubMed]
  69. P. Pajot, “Fluroescence of proteins in 6-M guanidine hydrochloride. a method for the quantitative determination of tryptophan,” Eur. J. Biochem.63(1), 263–269 (1976). [CrossRef] [PubMed]
  70. H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994). [CrossRef] [PubMed]
  71. H. Edelhoch, “Spectroscopic determination of tryptophan and tyrosine in proteins,” Biochemistry6(7), 1948–1954 (1967). [CrossRef] [PubMed]
  72. H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998). [CrossRef]
  73. R. O. Eitenmiller and W. O. Landen, Vitamin Analysis for the Food and Health Sciences (CRC, 1999).
  74. R. M. C. Dawson, D. C. Elliott, W. H. Elliot, and K. M. Jones, Data for Biochemical Research, 3rd ed. (Clarendon, 1986), pp. 122–131.
  75. T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970). [CrossRef]
  76. C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973). [CrossRef] [PubMed]
  77. G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957). [CrossRef]
  78. K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985). [CrossRef]
  79. A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970). [CrossRef] [PubMed]
  80. E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952). [CrossRef]
  81. J. F. Powell, “The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with alphaepsilon-diaminopimelic acid metabolism,” Biochem. J.70(1), 91–96 (1958). [PubMed]
  82. W. B. Dempsey, “Control of pyridoxine biosynthesis in Escherichia coli,” J. Bacteriol.90, 431–437 (1965). [PubMed]
  83. IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967). [PubMed]
  84. E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955). [CrossRef]
  85. E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954). [CrossRef]
  86. R. F. Chen, “Fluorescence quantum yield measurements: vitamin B6 compounds,” Science150(3703), 1593–1595 (1965). [CrossRef] [PubMed]
  87. IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967). [PubMed]
  88. N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966). [PubMed]
  89. K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972). [PubMed]
  90. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 5th ed. (Freeman, 2008), pp. 677–680, and 870 for vitamin B6 and congeners, and pp. 689–691, 866, and 884 for folates.
  91. H. Hayashi, “Pyridoxal enzymes: mechanistic diversity and uniformity,” J. Biochem.118(3), 463–473 (1995). [PubMed]
  92. M. Arrio-Dupont, “Etude par fluorescence de bases de Schiff du pyridoxal, comparaison avec la l aspartate-aminotransferase,” Photochem. Photobiol.12(4), 297–315 (1970). [CrossRef] [PubMed]
  93. E. Eisenstein, “Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli,” J. Biol. Chem.269(47), 29416–29422 (1994). [PubMed]
  94. J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).
  95. M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971). [PubMed]
  96. T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978). [CrossRef] [PubMed]
  97. K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995). [PubMed]
  98. N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974). [CrossRef] [PubMed]
  99. M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002). [CrossRef] [PubMed]
  100. Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967). [PubMed]
  101. J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993). [PubMed]
  102. M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003). [CrossRef] [PubMed]
  103. M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009). [CrossRef] [PubMed]
  104. H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003). [CrossRef] [PubMed]
  105. S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987). [PubMed]
  106. J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969). [PubMed]
  107. T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975). [PubMed]
  108. S. S. Gropper, J. L. Smith, and J. L. Groth, Advanced Nutrition and Human Metabolism, 4th ed. (Thompson Wadsworth, 2005), pp. 301–306.
  109. A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009). [CrossRef]
  110. M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011). [CrossRef] [PubMed]
  111. F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005). [CrossRef] [PubMed]
  112. M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974). [CrossRef] [PubMed]
  113. M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981). [PubMed]
  114. D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962). [PubMed]
  115. Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986). [PubMed]
  116. A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969). [CrossRef] [PubMed]
  117. R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982). [PubMed]
  118. J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993). [CrossRef] [PubMed]
  119. S. Sarasanandarajah, “Multiwavelength fluorescence studies of Bacillus bacterial spores,” PhD Dissertation, University of Canterbury, Christchurch, New Zealand (2007).
  120. T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007). [CrossRef] [PubMed]
  121. D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959). [CrossRef]
  122. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, 1971), p. 337.
  123. J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J.54(2), 210–211 (1953). [PubMed]
  124. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem.19(2), 327–337 (1967). [CrossRef] [PubMed]
  125. A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt.42(19), 4080–4087 (2003). [CrossRef] [PubMed]
  126. A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994). [CrossRef] [PubMed]
  127. N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979). [PubMed]
  128. R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978). [PubMed]
  129. J. R. Stephens, “Measurements of the ultraviolet fluorescence cross sections and spectra of Bacillus anthracis simulants,” Los Alamos National Lab, Report Number: LAUR-98–4173, MAY 1999.
  130. J. Atkins, M. E. Thomas, and R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Chemical and Biological Sensing VIII, ed. A. W. Fountain III, Proc. of SPIE 6554, 65540T, (2007).
  131. Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.
  132. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.
  133. J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet bacillus spores,” Appl. Opt.43(28), 5404–5409 (2004). [CrossRef] [PubMed]
  134. S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005). [CrossRef]
  135. P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).
  136. A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003). [CrossRef] [PubMed]
  137. D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011). [CrossRef]
  138. D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited