OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 10 — Nov. 8, 2013

Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser

Gregor Langer, Klaus-Dieter Bouchal, Hubert Grün, Peter Burgholzer, and Thomas Berer  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22410-22422 (2013)
http://dx.doi.org/10.1364/OE.21.022410


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present paper we demonstrate the possibility to image dyed solids, i.e. Rhodamine B dyed polyethylene spheres, by means of two-photon absorption-induced photoacoustic scanning microscopy. A two-photon luminescence image is recorded simultaneously with the photoacoustic image and we show that location and size of the photoacoustic and luminescence image match. In the experiments photoacoustic signals and luminescence signals are generated by pulses from a femtosecond laser. Photoacoustic signals are acquired with a hydrophone; luminescence signals with a spectrometer or an avalanche photo diode. In addition we derive the expected dependencies between excitation intensity and photoacoustic signal for single-photon absorption, two-photon absorption and for the combination of both. In order to verify our setup and evaluation method the theoretical predictions are compared with experimental results for liquid and solid specimens, i.e. a carbon fiber, Rhodamine B solution, silicon, and Rhodamine B dyed microspheres. The results suggest that the photoacoustic signals from the Rhodamine B dyed microspheres do indeed stem from two-photon absorption.

© 2013 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(190.4180) Nonlinear optics : Multiphoton processes
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Imaging Systems

History
Original Manuscript: July 17, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 7, 2013
Published: September 16, 2013

Virtual Issues
Vol. 8, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Gregor Langer, Klaus-Dieter Bouchal, Hubert Grün, Peter Burgholzer, and Thomas Berer, "Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser," Opt. Express 21, 22410-22422 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-19-22410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. P. T. C. So, “Two-photon fluorescence light microscopy,” Encyclopedia of Life Sciences, Nature Publishing Group (2002).
  3. A. Danielli, K. I. Maslov, A. Garcia-Uribe, A. M. Winkler, C. Li, L. Wang, and L. V. Wang “Non-linear photoacoustic microscopy with optical sectioning, ” presented at SPIE Photonics West, San Francisco, USA, 2–7 Feb. 2013.
  4. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering,” Opt. Express19(14), 13365–13377 (2011). [CrossRef] [PubMed]
  5. Y. Yamaoka and T. Takamatsu, “Enhancement of multiphoton excitation-induced photoacoustic signals by using gold nanoparticles surrounded by fluorescent dyes,” Proc. SPIE7177, 71772A (2009). [CrossRef]
  6. Y. Yamaoka, M. Nambu, and T. Takamatsu, “Frequency-selective multiphoton-excitation-induced photoacoustic microscopy (MEPAM) to visualize the cross sections of dense objects,” Proc. SPIE7564, 75642O (2010). [CrossRef]
  7. M. E. van Raaij, M. Lee, E. Cherin, B. Stefanovic, and F. S. Foster, “Femtosecond photoacoustics: integrated two-photon fluorescence and photoacoustic microscopy,” Proc. SPIE7564, 75642E (2010). [CrossRef]
  8. L. Song, E. J. Hennink, I. T. Young, and H. J. Tanke, “Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence Microscopy,” Biophys. J.68(6), 2588–2600 (1995). [CrossRef] [PubMed]
  9. P. Wilhelm and D. Stephan, “Photodegradation of rhodamine B in aqueous solution via SiO2 @ TiO2 nano-spheres,” J. Photochem. Photobiol. A185(1), 19–25 (2007). [CrossRef]
  10. Y. H. Lai, C. F. Chang, Y. H. Cheng, and C. K. Sun, “Two-Photon Photoacoustic Ultrasound Measurement by A Loss Modulation Technique,” Proc. of SPIE Vol. 8581, 85812R (2013). [CrossRef]
  11. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett.7(4), 118–119 (1961). [CrossRef]
  12. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970). [CrossRef]
  13. A. Brodeur and S. L. Chin, “Band-Gap Dependence of the Ultrafast White-light Continuum,” Phys. Rev. Lett.80(20), 4406–4409 (1998). [CrossRef]
  14. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol.12(11), 1784–1794 (2001). [CrossRef]
  15. C. Kittel, “Introduction to Solid State Physics” (Wiley, 2004).
  16. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  17. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picoseconds laser pulses,” Phys. Rev. B13(8), 3515–3522 (1976). [CrossRef]
  18. D. F. Price, R. M. More, R. S. Walling, G. Guethlein, R. L. Shepherd, R. E. Stewart, and W. E. White, “Absorption of Ultrashort Laser Pulses by Solid Targets Heated Rapidly to Temperatures 1-1000 eV,” Phys. Rev. Lett.75(2), 252–255 (1995). [CrossRef] [PubMed]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  20. G. Langer, A. Hochreiner, P. Burgholzer, and T. Berer, “A webcam in Bayer-mode as a light beam profiler for the near infra-red,” Opt. Lasers Eng.51(5), 571–575 (2013). [CrossRef] [PubMed]
  21. H. Kogelnik, “On the Propagation of Gaussian Beams of Light Through Lenslike Media Including those with a Loss or Gain Variation,” Appl. Opt.4(12), 1562 (1965). [CrossRef]
  22. I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Mathematik (Harri Deutsch, 1995).
  23. R. H. Partridge, “Near Ultraviolet Absorption Spectrum of Polyethylene,” J. Chem. Phys.45(5), 1679 (1966). [CrossRef]
  24. Private communication from Cospheric (e-mail from 27.02.2013).
  25. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008). [CrossRef] [PubMed]
  26. Properties of Silicon (INSPEC, 1988).
  27. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 800-2200nm,” Appl. Phys. Lett.90(19), 191104 (2007). [CrossRef]
  28. Onda Certificate of Hydrophone Calibration for HNC-1000 S/N:1193 (2011).
  29. P. N. T. Wells, “Ultrasonic Imaging of the human body,” Rep. Prog. Phys.62(5), 671–722 (1999). [CrossRef]
  30. C. Frez and G. J. Diebold, “Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments,” J. Chem. Phys.129(18), 184506 (2008). [CrossRef] [PubMed]
  31. Product information on Rhodamin B Polyethlyene Microspheres from Cospheric, http://www.cospheric-microspheres.com/Fluorescent_Microspheres_Rhodamine_B_p/rhodamine%20b%20microspheres.htm?1=1&CartID=0 (19.03.2013).
  32. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophoros with data from 690 to 1050nm,” J. Opt. Soc. Am. B13(3), 481 (1996). [CrossRef]
  33. H. Ju, R. A. Roy, and T. W. Murray, “Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,” Biomed. Opt. Express4(1), 66–76 (2013). [CrossRef] [PubMed]
  34. M. Pramanik and L. V. Wang, “Thermoacoustic and photoacoustic sensing of temperature,” J. Biomed. Opt.14(5), 054024 (2009). [CrossRef] [PubMed]
  35. A. Danielli, K. Maslov, J. Xia, and L. V. Wang, “Wide range quantitative photoacoustic spectroscopy to measure nonlinear optical absorption of hemoglobin,” Proc. SPIE8223, 82233H (2012). [CrossRef]
  36. R. E. Barker, “An approximate relation between elastic moduli and thermal expansivities,” J. Appl. Phys.34(1), 107 (1963). [CrossRef]
  37. M. Shen, W. N. Hansen, and P. C. Romo, “Thermal expansion of the polyethylene unit cell,” J. Chem. Phys.51(1), 425 (1969). [CrossRef]
  38. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett.36(7), 1134–1136 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited