OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect

Keiichiro Kagawa, Min-Woong Seo, Keita Yasutomi, Susumu Terakawa, and Shoji Kawahito  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1417-1429 (2013)
http://dx.doi.org/10.1364/OE.21.001417


View Full Text Article

Enhanced HTML    Acrobat PDF (2163 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-beam confocal microscopy without any physical pinhole was demonstrated. As a key device, a custom CMOS image sensor realizing a focal-plane pinhole array effect by special pixel addressing and discarding of the unwanted photocarriers was developed. The axial resolution in the confocal mode measured by FWHM for a planar mirror was 8.9 μm, which showed that the confocality has been achieved with the proposed CMOS image sensor.

© 2013 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 31, 2012
Revised Manuscript: December 28, 2012
Manuscript Accepted: January 4, 2013
Published: January 14, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Keiichiro Kagawa, Min-Woong Seo, Keita Yasutomi, Susumu Terakawa, and Shoji Kawahito, "Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect," Opt. Express 21, 1417-1429 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-2-1417


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Tiziani and H. M. Uhde, “Three-dimensional analysis by a microlens-array confocal arrangement,” Appl. Opt.33(4), 567–572 (1994). [CrossRef] [PubMed]
  2. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  3. J. Pawley and B. Masters, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995) Chap.11.
  4. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt.41(22), 4704–4708 (2002). [CrossRef] [PubMed]
  5. E. Fossum, “CMOS image sensors – electronic camera on a chip,” IEEE Trans. Electron. Dev.44(10), 1689–1698 (1997). [CrossRef]
  6. D. Scheffer, B. Dierickx, and G. Meynants, “Random addressable 2048×2048 active pixel sensor,” IEEE Trans. Electron. Dev.44(10), 1716–1720 (1997). [CrossRef]
  7. J. Ohta, Smart CMOS Image Sensors and Applications (CRC Press, 2007).
  8. P. Seitz and A. Theuwissen, Single-photon imaging (Springer, 2011).
  9. H. Yoon, S. Itoh, and S. Kawahito, “A CMOS image sensor with in-pixel two-stage transfer for fluorescence lifetime imaging,” IEEE Trans. Electron. Dev.56(2), 214–221 (2009). [CrossRef]
  10. D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 x 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express18(10), 10257–10269 (2010). [CrossRef] [PubMed]
  11. Z. Li, S. Kawahito, K. Yasutomi, K. Kagawa, J. Ukon, M. Hashimoto, and H. Niioka, “A time-resolved CMOS image sensor with draining-only modulation pixels for fluorescence lifetime imaging,” IEEE Trans. Electron. Dev.59(10), 2715–2722 (2012). [CrossRef]
  12. P. Lee, R. Gee, R. Guidash, T.-H. Lee, and E. Fossum, “An active pixel sensor fabricated using CMOS/CCD process technology,” Proc. 1995 IEEE Workshop on CCDs and AISs (1995).
  13. C. Sheppard and D. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997) Chap. 3.
  14. S. Kawata, O. Nakamura, T. Noda, H. Ooki, K. Ogino, Y. Kuroiwa, and S. Minami, “Laser computed-tomography microscope,” Appl. Opt.29(26), 3805–3809 (1990). [CrossRef] [PubMed]
  15. K. Yasutomi, S. Itoh, and S. Kawahito, “A two-stage charge transfer active pixel CMOS image sensor with low-noise global shuttering and a dual-shuttering mode,” IEEE Trans. Electron. Dev.58(3), 740–747 (2011). [CrossRef]
  16. M. Furuta, Y. Nishikawa, T. Inoue, and S. Kawahito, “A high-speed, high-sensitivity digital CMOS image sensor with a global shutter and 12-bit column-parallel cyclic A/D converter,” IEEE J. Solid-state Circuits42(4), 766–774 (2007). [CrossRef]
  17. K. Kagawa, Y. Ogura, J. Tanida, and Y. Ichioka, “Discrete correlation processor as a building core of a digital optical computing system: architecture and optoelectronic embodiment,” Appl. Opt.38(35), 7276–7281 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited