OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Subtle design changes control the difference in colour reflection from the dorsal and ventral wing-membrane surfaces of the damselfly Matronoides cyaneipennis

M.R. Nixon, A.G. Orr, and P. Vukusic  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1479-1488 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1556 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The hind wings of males of the damselfly Matronoides cyaneipennis exhibit iridescence that is blue dorsally and green ventrally. These structures are used semiotically in agonistic and courtship display. Transmission electron microscopy reveals these colours are due to two near-identical 5-layer distributed Bragg reflectors, one placed either side of the wing membrane. Interestingly the thicknesses of corresponding layers in each distributed Bragg reflector are very similar for all but the second layer from each outer surface. This one key difference creates the significant disparity between the reflected spectra from the distributed Bragg reflectors and the observed colours of either side of the wing. Modelling indicates that modifications to the thickness of this layer alone create a greater change in the peak reflected wavelength than is observed for similar modifications to the thickness of any other layer. This results in an optimised and highly effective pair of semiotic reflector systems, based on extremely comparable design parameters, with relatively low material and biomechanical costs.

© 2013 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(310.1620) Thin films : Interference coatings
(310.4165) Thin films : Multilayer design
(310.6188) Thin films : Spectral properties

ToC Category:
Thin Films

Original Manuscript: November 12, 2012
Revised Manuscript: December 13, 2012
Manuscript Accepted: December 17, 2012
Published: January 14, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

M.R. Nixon, A.G. Orr, and P. Vukusic, "Subtle design changes control the difference in colour reflection from the dorsal and ventral wing-membrane surfaces of the damselfly Matronoides cyaneipennis," Opt. Express 21, 1479-1488 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972). [CrossRef] [PubMed]
  2. D. L. Fox, Animal Biochromes and Structural Colours (University of California Press, 1976).
  3. P. Vukusic and J. R. Sambles, “Photonic structures in Biology,” Nature424(6950), 852–855 (2003). [CrossRef] [PubMed]
  4. J. P. Vigneron, M. Rassart, Z. Vértesy, K. Kertész, M. Sarrazin, L. P. Biró, D. Ertz, and V. Lousse, “Optical structure and function of the white filamentary hair covering the edelweiss bracts,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 011906 (2005). [CrossRef] [PubMed]
  5. B. J. Glover and H. M. Whitney, “Structural colour and iridescence in plants: the poorly studied relations of pigment colour,” Ann. Bot. (Lond.)105(4), 505–511 (2010). [CrossRef] [PubMed]
  6. E. Denton, “Reflectors in fishes,” Sci. Am.224(1), 64–72 (1971). [CrossRef]
  7. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A.100(22), 12576–12578 (2003). [CrossRef] [PubMed]
  8. T. Trzeciak and P. Vukusic, “Photonic crystal fiber in the polychaete work Pherusa sp,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.80(6), 061908 (2009). [CrossRef]
  9. D. G. Stavenga, H. L. Leertouwer, N. J. Marshall, and D. Osorio, “Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules,” Proc. Biol. Sci.278(1715), 2098–2104 (2011). [CrossRef] [PubMed]
  10. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express15(7), 4351–4358 (2007). [CrossRef] [PubMed]
  11. A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, “Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera),” J. R. Soc. Interface6(Suppl 2), S165–S184 (2009). [CrossRef] [PubMed]
  12. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999). [CrossRef]
  13. S. Yoshioka and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A23(1), 134–141 (2006). [CrossRef] [PubMed]
  14. J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, and M. H. Bartl, “Discovery of a diamond-based photonic crystal structure in beetle scales,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(5), 050904 (2008). [CrossRef] [PubMed]
  15. C. Pouya, D. G. Stavenga, and P. Vukusic, “Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus,” Opt. Express19(12), 11355–11364 (2011). [CrossRef] [PubMed]
  16. B. D. Wilts, K. Michielsen, J. Kuipers, H. De Raedt, and D. G. Stavenga, “Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis,” Proc. Biol. Sci.279(1738), 2524–2530 (2012). [CrossRef] [PubMed]
  17. K. Michielsen and D. G. Stavenga, “Gyroid cuticular structures in butterfly wing scales: biological photonic crystals,” J. R. Soc. Interface5(18), 85–94 (2008). [CrossRef] [PubMed]
  18. L. Poladian, S. Wickham, K. Lee, and M. C. J. Large, “Iridescence from photonic crystals and its suppression in butterfly scales,” J. R. Soc. Interface6(Suppl 2), S233–S242 (2009). [CrossRef] [PubMed]
  19. P. Vukusic, R. J. Wootton, and J. R. Sambles, “Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. Biol. Sci.271(1539), 595–601 (2004). [CrossRef] [PubMed]
  20. R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol.207(22), 3999–4009 (2004). [CrossRef] [PubMed]
  21. T. Hariyama, M. Hironaka, and D. G. Stavenga, “The Leaf Beetle, the Jewel Beetle and the Damselfly; Insects with a Multilayered Show Case,” In Structural colour in biological systems - principles and applications, S. Kinoshita and S. Yoshioka eds. (Osaka University Press, Osaka, Japan, 2005).
  22. J.-H. Dirks and D. Taylor, “Veins Improve Fracture Toughness of Insect Wings,” PLoS ONE7(8), e43411 (2012). [CrossRef] [PubMed]
  23. S. N. Gorb, A. Kesel, and J. Berger, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev.29(2), 129–135 (2000). [CrossRef] [PubMed]
  24. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express14(11), 4891–4897 (2006). [CrossRef] [PubMed]
  25. R. J. Wootton, “Functional morphology of insect wings,” Annu. Rev. Entomol.37(1), 113–1140 (1992). [CrossRef]
  26. A.G. Orr and M. Hämäläinen, The metalwing demoiselles of the eastern tropics: their identification and biology, (Natural History Publications, Borneo, 2007).
  27. P. Vukusic and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface6(Suppl 2), S133–S148 (2009). [CrossRef] [PubMed]
  28. P. Vukusic, R. Sambles, C. R. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001). [CrossRef] [PubMed]
  29. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. Biol. Sci.271(Suppl 4), S237–S239 (2004). [CrossRef] [PubMed]
  30. D. G. Stavenga, B. D. Wilts, H. L. Leertouwer, and T. Hariyama, “Polarized iridescence of the multi-layered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima,” Philos. Trans. R. Soc. London, Ser. B366(1565), 709–723 (2011). [CrossRef]
  31. D. G. Stavenga, H. L. Leertouwer, T. Hariyama, H. A. De Raedt, and B. D. Wilts, “Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins,” PLoS ONE7(11), e49743 (2012). [CrossRef] [PubMed]
  32. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express19(24), 24061–24066 (2011). [CrossRef] [PubMed]
  33. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011). [CrossRef] [PubMed]
  34. H. J. Dumont, J. R. Vanfleteren, J. F. De Jonckheere, and P. H. H Weekers, “Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (Odonata, Zygoptera) inferred from ribosomal DNA sequences,” Syst. Biol.54(3), 347–362 (2005). [CrossRef] [PubMed]
  35. A. Günther, “Reproductive behavior of Neurobasis kaupi (Odonata: Calopterygidae),” Int. J. Odonat.9(2), 151–164 (2006). [CrossRef]
  36. A. G. Orr, “Territorial and courtship displays in Bornean Chlorocyphidae (Zygotptera),” Odonatologica25, 119–141 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited