OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Electrically modulated transparent liquid crystal -optical grating projection

Thomas Buß, Cameron L.C. Smith, and Anders Kristensen  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1820-1829 (2013)
http://dx.doi.org/10.1364/OE.21.001820


View Full Text Article

Enhanced HTML    Acrobat PDF (5083 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transparent, fully integrated electrically modulated projection technique is presented based on light guiding through a thin liquid crystal layer covering sub-wavelength gratings. The reported device operates at 10 V with response times of 4.5 ms. Analysis of the liquid crystal alignment shows that director-reorientation occurs over timescales on the order of 90 µs close to the grating surface. The technology is suitable for next generation heads-up-displays and reconfigurable multilayer photonic integrated circuits.

© 2013 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(120.2040) Instrumentation, measurement, and metrology : Displays
(160.3710) Materials : Liquid crystals
(310.2785) Thin films : Guided wave applications
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

History
Original Manuscript: November 23, 2012
Revised Manuscript: January 6, 2013
Manuscript Accepted: January 9, 2013
Published: January 16, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Thomas Buß, Cameron L.C. Smith, and Anders Kristensen, "Electrically modulated transparent liquid crystal -optical grating projection," Opt. Express 21, 1820-1829 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-2-1820


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Wager, “Applied physics. Transparent electronics,” Science300(5623), 1245–1246 (2003). [CrossRef] [PubMed]
  2. Y. Yang, S. Jeong, L. Hu, H. Wu, S. W. Lee, and Y. Cui, “Transparent lithium-ion batteries,” Proc. Natl. Acad. Sci. U.S.A.108(32), 13013–13018 (2011). [CrossRef] [PubMed]
  3. L. Xiao, Z. Chen, C. Feng, L. Liu, Z.-Q. Bai, Y. Wang, L. Qian, Y. Zhang, Q. Li, K. Jiang, and S. Fan, “Flexible, stretchable, transparent carbon nanotube thin film loudspeakers,” Nano Lett.8(12), 4539–4545 (2008). [CrossRef] [PubMed]
  4. F. Giraud, M. Amberg, B. Lemaire-Semail, and G. Casiez, “Design of a transparent tactile stimulator,” in 2012 IEEE Haptics Symposium (HAPTICS) (IEEE, 2012), pp. 485–489.
  5. T. S. Kim, J. S. Park, K. S. Son, J. S. Jung, K.-H. Lee, W. J. Maeng, H.-S. Kim, J.-Y. Kwon, B. Koo, and S. Lee, “Transparent AMOLED display driven by hafnium-indium-zinc oxide thin film transistor array,” Curr. Appl. Phys.11(5), 1253–1256 (2011). [CrossRef]
  6. Y.-H. Cheng and G.-D. J. Su, “Waveguide display using polymer-dispersed liquid crystal,” Proc. SPIE8114, 811414, 811414-8 (2011). [CrossRef]
  7. L. Eisen, M. Meyklyar, M. Golub, A. A. Friesem, I. Gurwich, and V. Weiss, “Planar configuration for image projection,” Appl. Opt.45(17), 4005–4011 (2006). [CrossRef] [PubMed]
  8. Z. Yan, W. Li, Y. Zhou, M. Kang, and Z. Zheng, “Virtual display design using waveguide hologram in conical mounting configuration,” Opt. Eng.50(9), 094001 (2011). [CrossRef]
  9. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33(11), 2038–2059 (1997). [CrossRef]
  10. T. Buß, C. L. C. Smith, M. Brøkner Christiansen, R. Marie, and A. Kristensen, “Sub-wavelength surface gratings for light redirection in transparent substrates,” Appl. Phys. Lett.101(4), 043109 (2012). [CrossRef]
  11. W. Schenck, D.-H. Ko, and E. Samulski, “Liquid crystal alignment on polymer line gratings,” J. Appl. Phys.109(6), 064301 (2011). [CrossRef]
  12. D.-R. Chiou, L.-J. Chen, and C.-D. Lee, “Pretilt angle of liquid crystals and liquid-crystal alignment on microgrooved polyimide surfaces fabricated by soft embossing method,” Langmuir22(22), 9403–9408 (2006). [CrossRef] [PubMed]
  13. R. Lin and J. A. Rogers, “Molecular-scale soft imprint lithography for alignment layers in liquid crystal devices,” Nano Lett.7(6), 1613–1621 (2007). [CrossRef] [PubMed]
  14. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett.28(26), 1683–1686 (1972). [CrossRef]
  15. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977). [CrossRef]
  16. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. (Deerfield Beach Fla.)19(4), 495–513 (2007). [CrossRef]
  17. J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys.12(6), 1387–1412 (2012). [CrossRef]
  18. K. Miyoshi, S. Yamada, S. Miyahara, M. Yamashita, Y. Hashimoto, T. Yukinari, and K. Ishiguro, “Conoscopic study of liquid crystal after application and removal of the external electric field,” Jpn. J. Appl. Phys.22(Part 1, No. 12), 1754–1765 (1983). [CrossRef]
  19. M. Jiao, Z. Ge, Q. Song, and S.-T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett.92(6), 061102 (2008). [CrossRef]
  20. Y. Q. Lin, S. M. Feng, and T. Chen, “Temperature effect on threshold voltage and optical property of twisted nematic liquid crystal with applied different voltages,” Optik (Stuttg.)121(18), 1693–1697 (2010). [CrossRef]
  21. S. Klinkhammer, N. Heussner, K. Huska, T. Bocksrocker, F. Geislhöringer, C. Vannahme, T. Mappes, and U. Lemmer, “Voltage-controlled tuning of an organic semiconductor distributed feedback laser using liquid crystals,” Appl. Phys. Lett.99(2), 023307 (2011). [CrossRef]
  22. T.-H. Chao, T. T. Lu, S. R. Davis, S. D. Rommel, G. Farca, B. Luey, A. Martin, and M. H. Anderson, “Compact liquid crystal waveguide based Fourier transform spectrometer for in-situ and remote gas and chemical sensing,” Proc. SPIE6977, 69770P, 69770P-11 (2008). [CrossRef]
  23. K. Kato, T. Hisaki, and M. Date, “In-plane operation of alignment-controlled holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys.38(Part 1, No. 3A), 1466–1469 (1999). [CrossRef]
  24. A. K. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol.29(17), 2560–2569 (2011). [CrossRef]
  25. T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Status Solidi A197(3), 688–702 (2003). [CrossRef]
  26. D. D. John, M. J. R. Heck, J. F. Bauters, R. Moreira, J. S. Barton, J. E. Bowers, and D. J. Blumenthal, “Multilayer platform for ultra-low-loss waveguide applications,” IEEE Photonic. Tech. L.24(11), 876–878 (2012). [CrossRef]
  27. M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express14(15), 6823–6836 (2006). [CrossRef] [PubMed]
  28. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express19(12), 11330–11339 (2011). [CrossRef] [PubMed]
  29. S. Dochow, C. Krafft, U. Neugebauer, T. Bocklitz, T. Henkel, G. Mayer, J. Albert, and J. Popp, “Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments,” Lab Chip11(8), 1484–1490 (2011). [CrossRef] [PubMed]
  30. B. Landenberger, H. Höfemann, S. Wadle, and A. Rohrbach, “Microfluidic sorting of arbitrary cells with dynamic optical tweezers,” Lab Chip12(17), 3177–3183 (2012). [CrossRef] [PubMed]
  31. A. R. Faustov, M. R. Webb, and D. R. Walt, “Note: Toward multiple addressable optical trapping,” Rev. Sci. Instrum.81(2), 026109 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited