OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals

Rui Liu, Qin Huang, Bing Li, Cui Yin, Chao Jiang, Jia Wang, Jinling Lu, Qingmin Luo, and Pengcheng Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1911-1924 (2013)
http://dx.doi.org/10.1364/OE.21.001911


View Full Text Article

Enhanced HTML    Acrobat PDF (2972 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Observation of brain activities in freely moving animals has become an important approach for neuroscientists to understand the correlation between brain function and behavior. We describe an extendable fiber-optic-based multi-modal imaging system that can concurrently carry out laser speckle contrast imaging (LSCI) of blood flow and optical intrinsic signal (OIS) imaging in freely moving animals, and it could be extended to fluorescence imaging. Our imaging system consists of a multi-source illuminator, a fiber multi-channel optical imaging unit, and a head-mounted microscope. The imaging fiber bundle delivers optical images from the head-mounted microscope to the multi-channel optical imaging unit. Illuminating multi-mode fiber bundles transmit light to the head-mounted microscope which has a mass of less than 1.5 g and includes a gradient index lens, giving the animal maximum movement capability. The internal optical components are adjustable, allowing for a change in magnification and field of view. We test the system by observing hemodynamic changes during cortical spreading depression (CSD) in freely moving and anesthetized animals by simultaneous LSCI and dual-wavelength OIS imaging. Hemodynamic parameters were calculated. Significant differences in CSD propagation durations between the two states were observed. Furthermore, it is capable of performing fluorescence imaging to explore animal behavior and the underlying brain functional activity further.

© 2013 OSA

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(110.2960) Imaging systems : Image analysis
(170.0180) Medical optics and biotechnology : Microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5380) Medical optics and biotechnology : Physiology
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Imaging Systems

History
Original Manuscript: November 8, 2012
Revised Manuscript: December 29, 2012
Manuscript Accepted: January 8, 2013
Published: January 17, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Rui Liu, Qin Huang, Bing Li, Cui Yin, Chao Jiang, Jia Wang, Jinling Lu, Qingmin Luo, and Pengcheng Li, "Extendable, miniaturized multi-modal optical imaging system: cortical hemodynamic observation in freely moving animals," Opt. Express 21, 1911-1924 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-2-1911


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Helmchen and C. C. H. Petersen, “New views into the brain of mice on the move,” Nat. Methods5(11), 925–926 (2008). [CrossRef] [PubMed]
  2. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in Light Microscopy for Neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009). [CrossRef] [PubMed]
  3. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  4. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals,” Neuron31(6), 903–912 (2001). [CrossRef] [PubMed]
  5. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009). [CrossRef] [PubMed]
  6. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004). [CrossRef] [PubMed]
  7. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008). [CrossRef] [PubMed]
  8. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods5(11), 935–938 (2008). [CrossRef] [PubMed]
  9. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003). [CrossRef] [PubMed]
  10. J. Sawinski, D. J. Wallace, D. S. Greenberg, S. Grossmann, W. Denk, and J. N. D. Kerr, “Visually evoked activity in cortical cells imaged in freely moving animals,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19557–19562 (2009). [CrossRef] [PubMed]
  11. I. Ferezou, S. Bolea, and C. C. H. Petersen, “Visualizing the cortical representation of whisker touch: Voltage-sensitive dye imaging in freely moving mice,” Neuron50(4), 617–629 (2006). [CrossRef] [PubMed]
  12. P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt.16(9), 090502 (2011). [CrossRef] [PubMed]
  13. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, “Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,” Neuron39(2), 353–359 (2003). [CrossRef] [PubMed]
  14. H. K. Shin, A. K. Dunn, P. B. Jones, D. A. Boas, M. A. Moskowitz, and C. Ayata, “Vasoconstrictive neurovascular coupling during focal ischemic depolarizations,” J. Cereb. Blood Flow Metab.26(8), 1018–1030 (2006). [CrossRef] [PubMed]
  15. H. Bolay, U. Reuter, A. K. Dunn, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model,” Nat. Med.8(2), 136–142 (2002). [CrossRef] [PubMed]
  16. D. H. Lim, M. H. Mohajerani, J. Ledue, J. Boyd, S. Chen, and T. H. Murphy, “In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas,” Front Neural Circuits6, 11 (2012), doi:. [CrossRef] [PubMed]
  17. P. J. Drew and D. E. Feldman, “Intrinsic Signal Imaging of Deprivation-Induced Contraction of Whisker Representations in Rat Somatosensory Cortex,” Cereb. Cortex19(2), 331–348 (2008). [CrossRef] [PubMed]
  18. C. C. H. Petersen, “The functional organization of the barrel cortex,” Neuron56(2), 339–355 (2007). [CrossRef] [PubMed]
  19. C. C. H. Petersen and B. Sakmann, “Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging,” J. Neurosci.21(21), 8435–8446 (2001). [PubMed]
  20. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  21. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  22. Z. C. Luo, Z. J. Yuan, Y. T. Pan, and C. W. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett.34(9), 1480–1482 (2009). [CrossRef] [PubMed]
  23. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, “Functional architecture of cortex revealed by optical imaging of intrinsic signals,” Nature324(6095), 361–364 (1986). [CrossRef] [PubMed]
  24. C. H. Chen-Bee, T. Agoncillo, C. C. Lay, and R. D. Frostig, “Intrinsic signal optical imaging of brain function using short stimulus delivery intervals,” J. Neurosci. Methods187(2), 171–182 (2010). [CrossRef] [PubMed]
  25. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003). [CrossRef] [PubMed]
  26. E. Farkas, F. Bari, and T. P. Obrenovitch, “Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex,” Neuroimage51(2), 734–742 (2010). [CrossRef] [PubMed]
  27. T. P. Obrenovitch, S. B. Chen, and E. Farkas, “Simultaneous, live imaging of cortical spreading depression and associated cerebral blood flow changes, by combining voltage-sensitive dye and laser speckle contrast methods,” Neuroimage45(1), 68–74 (2009). [CrossRef] [PubMed]
  28. X. L. Sun, Y. R. Wang, S. B. Chen, W. H. Luo, P. C. Li, and Q. M. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage57(3), 873–884 (2011). [CrossRef] [PubMed]
  29. A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage27(2), 279–290 (2005). [CrossRef] [PubMed]
  30. M. Lauritzen, “Cortical spreading depression in migraine,” Cephalalgia21(7), 757–760 (2001). [CrossRef] [PubMed]
  31. H. Martins-Ferreira, M. Nedergaard, and C. Nicholson, “Perspectives on spreading depression,” Brain Res. Brain Res. Rev.32(1), 215–234 (2000). [CrossRef] [PubMed]
  32. R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: Applications in the human knee,” J. Orthop. Res.24(8), 1650–1659 (2006). [CrossRef] [PubMed]
  33. K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: New instrumentation and technique,” Lasers Surg. Med.33(3), 151–157 (2003). [CrossRef] [PubMed]
  34. H. Y. Zhang, P. C. Li, N. Y. Feng, J. J. Qiu, B. Li, W. H. Luo, and Q. M. Luo, “Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow,” Opt. Express20(1), 508–517 (2012). [CrossRef] [PubMed]
  35. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med Imaging26(6), 833–842 (2007). [CrossRef]
  36. H. Y. Cheng, Y. M. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express16(14), 10214–10219 (2008). [CrossRef] [PubMed]
  37. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol.45(12), 3749–3764 (2000). [CrossRef] [PubMed]
  38. C. Kudo, A. Nozari, M. A. Moskowitz, and C. Ayata, “The impact of anesthetics and hyperoxia on cortical spreading depression,” Exp. Neurol.212(1), 201–206 (2008). [CrossRef] [PubMed]
  39. A. Mayevsky, N. Zarchin, and C. M. Friedli, “Factors affecting the oxygen balance in the awake cerebral cortex exposed to spreading depression,” Brain Res.236(1), 93–105 (1982). [CrossRef] [PubMed]
  40. I. Yuzawa, S. Sakadžić, V. J. Srinivasan, H. K. Shin, K. Eikermann-Haerter, D. A. Boas, and C. Ayata, “Cortical spreading depression impairs oxygen delivery and metabolism in mice,” J. Cereb. Blood Flow Metab.32(2), 376–386 (2012). [CrossRef] [PubMed]
  41. J. M. Smith, D. P. Bradley, M. F. James, and C. L. H. Huang, “Physiological studies of cortical spreading depression,” Biol. Rev. Camb. Philos. Soc.81(4), 457–481 (2006). [CrossRef] [PubMed]
  42. G. G. Somjen, “Mechanisms of spreading depression and hypoxic spreading depression-like depolarization,” Physiol. Rev.81(3), 1065–1096 (2001). [PubMed]
  43. F. Matyas, V. Sreenivasan, F. Marbach, C. Wacongne, B. Barsy, C. Mateo, R. Aronoff, and C. C. Petersen, “Motor control by sensory cortex,” Science330(6008), 1240–1243 (2010). [CrossRef] [PubMed]
  44. J. Sonn and A. Mayevsky, “Effects of anesthesia on the responses to cortical spreading depression in the rat brain in vivo,” Neurol. Res.28(2), 206–219 (2006). [CrossRef] [PubMed]
  45. R. C. Guedes and J. M. Barreto, “Effect of anesthesia on the propagation of cortical spreading depression in rats,” Braz. J. Med. Biol. Res.25(4), 393–397 (1992). [PubMed]
  46. Y. Kitahara, K. Taga, H. Abe, and K. Shimoji, “The effects of anesthetics on cortical spreading depression elicitation and c-fos expression in rats,” J. Neurosurg. Anesthesiol.13(1), 26–32 (2001). [CrossRef] [PubMed]
  47. A. Van Harreveld and J. S. Stamm, “Effect of pentobarbital and ether on the spreading cortical depression,” Am. J. Physiol.173(1), 164–170 (1953). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited