OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Wide-angle scannable reflector design using conformal transformation optics

Liang Liang and Sean V. Hum  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2133-2146 (2013)
http://dx.doi.org/10.1364/OE.21.002133


View Full Text Article

Enhanced HTML    Acrobat PDF (1470 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A flat reflector capable of scanning over wide angles is designed using a transformation optics approach. This reflector is derived from its virtual parabolic counterpart using a conformal coordinate transformation that determines the permittivity profile of the flat reflector. By changing the permittivity profile, the flat reflector is then capable of scanning up to 47° away from broadside while maintaining good beam characteristics across a wide frequency range. Moreover, its directivity is comparable to that of the virtual parabolic reflector, even at high scan angles. We use the Schwarz-Christoffel transformation as a versatile tool to produce perfect conformal mapping of coordinates between the virtual and flat reflectors, thereby avoiding the need to monitor the anisotropy of the material that results when employing quasi-conformal methods.

© 2013 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:
Physical Optics

History
Original Manuscript: November 30, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 5, 2013
Published: January 18, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Liang Liang and Sean V. Hum, "Wide-angle scannable reflector design using conformal transformation optics," Opt. Express 21, 2133-2146 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-2-2133


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tyc and U. Leonhardt, “Broadband invisibility by non-euclidean cloaking,” Science323, 110–112 (2009). [CrossRef]
  2. R. Schmied, J. C. Halimeh, and M. Wegener, “Conformal carpet and grating cloaks,” Opt. Express18, 24361–24367 (2010). [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett.101, 203901 (2008). [CrossRef] [PubMed]
  4. D. Schurig, “An aberration-free lens with zero f-number,” New J. of Phys.10, 115034 (2008). [CrossRef]
  5. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nature Materials9, 129 – 32 (2010). [CrossRef]
  6. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express17, 16535–16542 (2009). [CrossRef] [PubMed]
  7. D. H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right-angle bends,” New J. of Phys.10, 115023 (2008). [CrossRef]
  8. N. Engheta, “Antenna-guided light,” Science21, 317–318 (2011). [CrossRef]
  9. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express16, 11555–11567 (2008). [CrossRef] [PubMed]
  10. F. Kong, B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett.91, 253509 –253509–3 (2007). [CrossRef]
  11. P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys.105, 104912 –104912–6 (2009). [CrossRef]
  12. H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett.89, 053509 (2006). [CrossRef]
  13. Z. L. Mei and T. J. Cui, “Experimental realization of a broadband bend structure using gradient index metamaterials,” Opt. Express17, 18354–18363 (2009). [CrossRef] [PubMed]
  14. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys.101, 024911 (2007). [CrossRef]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  16. M. Riel and J. J. Laurin, “Design of an electronically beam scanning reflectarray using aperture-coupled elements,” IEEE Trans. Antennas Propag.55, 1260 –1266 (2007). [CrossRef]
  17. S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antennas Propag.55, 2200 –2210 (2007). [CrossRef]
  18. M. Arrebola, J. A. Encinar, R. Cahill, and G. Toso, “Dual-reflector antenna with a reflectarray subreflector for wide beam scanning range at 120 GHz,” Int. Conf. Electromagn. in Advanced Applications, 848–851 (2012).
  19. A. Gaebler, A. Moessinger, F. Goelden, A. Manabe, M. Goebel, R. Follmann, D. Koether, C. Modes, A. Kipka, M. Deckelmann, T. Rabe, B. Schulz, P. Kuchenbecker, A. Lapanik, S. Mueller, W. Haase, and R. Jakoby, “Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves,” Int. J. of Antennas Propag. (2009). [CrossRef]
  20. L. Cabria, J. A. Garcia, J. Gutierrez-Rios, A. Tazon, and J. Vassal’lo, “Active reflectors: Possible solutions based on reflectarrays and Fresnel reflectors,” Int. J. Antennas Propag. (2009). [CrossRef]
  21. J. Gutierrez-Rios and J. V. Sanz, “Simulated response of conic Fresnel zone plate reflectors (CFZPS),” in Europ. Conf. Antennas Propag. (2006). [CrossRef]
  22. Y. Ji and M. Fujita, “Design and analysis of a folded Fresnel zone plate antenna,” Int. J. of Infrared and Millimeter Waves15, 1385–1406 (1994). [CrossRef]
  23. R. Yang, W. Tang, and Y. Hao, “Wideband beam-steerable flat reflectors via transformation optics,” IEEE Antennas Wireless Propag. Lett.10, 1290 –1294 (2011). [CrossRef]
  24. L. Tang, J. Yin, G. Yuan, J. Du, H. Gao, X. Dong, Y. Lu, and C. Du, “General conformal transformation method based on Schwarz-Christoffel approach,” Opt. Express19, 15119–15126 (2011). [CrossRef] [PubMed]
  25. U. Leonhardt, “Optical conformal mapping,” Science23, 1777–1780 (2006). [CrossRef]
  26. W. Tang, C. Argyropoulos, E. Kallos, W. Song, and Y. Hao, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag.58, 3795 –3804 (2010). [CrossRef]
  27. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A27, 968–972 (2010). [CrossRef]
  28. T. A. Driscoll, A MATLAB toolbox for Schwartz-Christoffel mapping (ACM Trans. Math. Softw., 1996).
  29. D. Wunsch, Complex Variables with Applications (Addison Wesley, 1993).
  30. N. Kundtz, D. R. Smith, and J. B. Pendry, “Electromagnetic design with transformation optics,” Proceedings of the IEEE99, 1622 –1633 (2011). [CrossRef]
  31. J. P. Turpin, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Tunable metamaterials for conformally mapped transformation optics lenses,” IEEE Proc. AP–S Int. Symp. Antennas Propag. (2010).
  32. S. V. Hum, M. Okoniewski, and R. J. Davies, “Realizing an electronically tunable reflectarray using varactor diode-tuned elements,” IEEE Microw. Wireless Compon. Lett. (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited