OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Gigapixel fluorescence microscopy with a water immersion microlens array

Antony Orth and Kenneth Crozier  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2361-2368 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2669 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate high throughput gigapixel fluorescence microscopy with a microlens array. We show, for the first time to the best of our knowledge, the use of a parallelized microscopy system to image samples in micro well plates. We image centimeter-scale regions of 384-well micro well plates at 1.72 μm resolution at a raw pixel throughput of 25.4 Mpx/s. Taking into account the fact that about half the well plate area consists of the plastic support region between wells, this corresponds to a sample pixel throughput of 13.2 Mpx/s, more than double that of the commercial state-of-the-art at the time of writing. Fluorescent imaging of tissue samples through coverslips is also demonstrated.

© 2013 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.5810) Medical optics and biotechnology : Scanning microscopy
(350.3950) Other areas of optics : Micro-optics

ToC Category:

Original Manuscript: December 13, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 3, 2013
Published: January 23, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Antony Orth and Kenneth Crozier, "Gigapixel fluorescence microscopy with a water immersion microlens array," Opt. Express 21, 2361-2368 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006). [CrossRef] [PubMed]
  2. P. Lang, K. Yeow, A. Nichols, and A. Scheer, “Cellular imaging in drug discovery,” Nat. Rev. Drug Discov.5(4), 343–356 (2006). [CrossRef] [PubMed]
  3. Ibidi μ-Plate 384-well specifications sheet, http://ibidi.com/fileadmin/products/labware/plates/P_8840X_Plate_384well/IN_884XX_384.pdf , accessed 24 Nov 2012.
  4. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012). [CrossRef] [PubMed]
  5. O. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” IEEE International Conference on Computational Photography, 1–8 (2011).
  6. G. Zheng, X. Ou, and C. Yang, “Towards giga-pixel microscopy,” CLEO 2012. Optical Society of America, Washington, DC, 1–2.
  7. S. O. Isikman, A. Greenbaum, W. Luo, A. F. Coskun, and A. Ozcan, “Giga-Pixel Lens Free Holographic Microscopy and Tomography Using Color Image Sensors,” PLoS ONE7(9), e45044 (2012). [CrossRef] [PubMed]
  8. A. Orth and K. B. Crozier, “Microscopy with microlens arrays: high throughput, high resolution and light-field imaging,” Opt. Express20(12), 13522–13531 (2012). [CrossRef] [PubMed]
  9. S. Michael, D. Auld, C. Klumpp, A. Jadhav, W. Zheng, N. Thorne, C. P. Austin, J. Inglese, and A. Simeonov, “A Robotic Platform for Quantitative High-Throughput Screening,” Assay Drug Dev. Technol.6(5), 637–657 (2008). [CrossRef] [PubMed]
  10. P. H. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt.6(6), 617–636 (1997). [CrossRef]
  11. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Opt. Eng.39(8), 2171–2176 (2000). [CrossRef]
  12. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolonder, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens array fabricated by soft-lithography replication process,” Appl. Phys. Lett.82, 1152–1154 (2003).
  13. R. W. Cole, T. Jinadasa, and C. M. Brown, “Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control,” Nat. Protoc.6(12), 1929–1941 (2011). [CrossRef] [PubMed]
  14. F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production part II: analytic models,” Optik (Stuttg.)113(9), 405–420 (2002). [CrossRef]
  15. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics25(11), 1463–1465 (2009). [CrossRef] [PubMed]
  16. Molecular Devices ImageXpress Micro product website, http://www.highthroughputimaging.com/screening/imagexpress_micro.html#apps , accessed 24 November 2012.
  17. J. Kononen, L. Bubendorf, A. Kallioniemi, M. Bärlund, P. Schraml, S. Leighton, J. Torhorst, M. J. Mihatsch, G. Sauter, and O. P. Kallioniemi, “Tissue microarrays for high-throughput molecular profiling of tumor specimens,” Nat. Med.4(7), 844–847 (1998). [CrossRef] [PubMed]
  18. P. Capodieci, M. Donovan, H. Buchinsky, Y. Jeffers, C. Cordon-Cardo, W. Gerald, J. Edelson, S. M. Shenoy, and R. H. Singer, “Gene expression profiling in single cells within tissue,” Nat. Methods2(9), 663–665 (2005). [CrossRef] [PubMed]
  19. E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett.34(14), 2228–2230 (2009). [CrossRef] [PubMed]
  20. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip10(7), 852–856 (2010). [CrossRef] [PubMed]
  21. E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express19(2), 1385–1394 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited