OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Radial angular filter arrays for angle-resolved scattering spectroscopy

Yan Zhang, Fartash Vasefi, Mohamadreza Najiminaini, Bozena Kaminska, and Jeffrey J. L. Carson  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 2928-2941 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2611 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The radial angular filter array (RAFA) consists of a series of radially-distributed micro-machined channels, where the long axes of the channels converge at a focal point. The high aspect ratio of each channel provides a means to reject photons with trajectories outside the acceptance angle of the channel. The output of the RAFA represents the angular distribution of photons emitted from the focal point. A series of RAFAs were designed, fabricated, and tested to evaluate the impact of device geometry, inter-channel cross talk, achromaticity, and channel leakage on device performance. As an application example, an RAFA was used together with an imaging spectrometer to capture angle-resolved spectra of turbid samples.

© 2013 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(290.5820) Scattering : Scattering measurements

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 13, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: January 21, 2013
Published: January 31, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Yan Zhang, Fartash Vasefi, Mohamadreza Najiminaini, Bozena Kaminska, and Jeffrey J. L. Carson, "Radial angular filter arrays for angle-resolved scattering spectroscopy," Opt. Express 21, 2928-2941 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt.38(16), 3651–3661 (1999). [PubMed]
  2. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J.82(4), 2256–2264 (2002). [PubMed]
  3. Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, “Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology,” J. Biomed. Opt.16(1), 011003 (2011). [PubMed]
  4. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R. R. Dasari, and M. S. Feld, “Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry,” J. Opt. Soc. Am. A19(4), 737–744 (2002). [PubMed]
  5. J. Miettinen, A. Harkonen, and T. H. Piironen, “Optical scattering measurement instrument for the design of machine vision illumination,” Proc. SPIE1614, 45–56 (1992).
  6. P. Kadkhoda, W. Sakiew, S. Günster, and D. Ristau, “Fast total scattering facility for 2D inspection of optical and functional surfaces,” Proc. SPIE7389, 73890S (2009).
  7. N. N. Boustany and N. V. Thakor, “Light scatter spectroscopy and imaging of cellular and subcellular events,” in Biomedical Photonics Handbook (CRC Press, 2002), pp. 16.1–16.23.
  8. D. P. Gibbs, A. K. Fung, and A. J. Blanchard, “A bistatic optical scattering measurement system: design, fabrication, and experimental results,” in Proceedings of Geoscience and Remote Sensing Symposium (1990), pp. 2133–2136.
  9. V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009). [PubMed]
  10. C. Lau, O. Sćepanović, J. Mirkovic, S. McGee, C. C. Yu, S. Fulghum, M. Wallace, J. Tunnell, K. Bechtel, and M. Feld, “Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy,” J. Biomed. Opt.14(2), 024031 (2009). [PubMed]
  11. T. Weyrich, W. Matusik, H. Pfister, A. Ngan, and M. Gross, “Measuring skin reflectance and subsurface scattering,” http://www.merl.com/papers/docs/TR2005-046.pdf .
  12. T. Dennis, S. D. Dyer, A. Dienstfrey, G. Singh, and P. Rice, “Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography,” J. Biomed. Opt.13(2), 024004 (2008). [PubMed]
  13. C. Y. Liu, T. A. Liu, and W. E. Fu, “Polarized optical scattering measurements of nanoparticles upon a thin film silicon wafer,” in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 116–119.
  14. R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng.46(12), 123201 (2007).
  15. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011). [PubMed]
  16. F. E. Robles and A. Wax, “Measuring structural features using a dual window method for light scattering spectroscopy and Fourier-domain low coherence interferometry,” Proc. SPIE7573, 757310 (2010).
  17. F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, H. Zeng, G. H. Chapman, and J. J. L. Carson, “Angle-resolved spectroscopy using a radial angular filter array,” Proc. SPIE7562, 756209 (2010).
  18. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Optimization of radial angular filter arrays for detecting the angular distribution of light,” Proc. SPIE7894, 78940M (2011).
  19. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Use of a radial angular filter array to estimate the position of an optically attenuating object within a turbid medium,” Proc. SPIE8230, 82300A (2012).
  20. Y. Zhang, F. Vasefi, M. Najiminaini, B. Kaminska, and J. J. L. Carson, “Angle-resolved spectroscopy: a tissue-mimicking phantom study,” Proc. SPIE8221, 82211B (2012).
  21. F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt.15(6), 061710 (2010). [PubMed]
  22. J. C. Stover, Optical scattering: measurement and analysis (SPIE Press, 19–22, 1995).
  23. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt.4(7), 767–775 (1965).
  24. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation Studies,” Lasers Surg. Med.12(5), 510–519 (1992). [PubMed]
  25. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [PubMed]
  26. F. Vasefi, M. Najiminaini, E. Ng, A. Chamson-Reig, B. Kaminska, M. Brackstone, and J. J. L. Carson, “Transillumination hyperspectral imaging for histopathological examination of excised tissue,” J. Biomed. Opt.16(8), 086014 (2011). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited