OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source

Linnea Olofsson and Emmanuel Margeat  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3370-3378 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulsed Interleaved Excitation (PIE) improves fluorescence cross-correlation spectroscopy (FCCS) and single pair Förster Resonance Energy Transfer (spFRET) measurements, by correlating each detected photon to the excitation source that generated it. It relies on the interleaving of two picosecond laser sources and time correlated single photon counting (TCSPC) detection. Here, we present an optical configuration based on a commercial supercontinuum laser, which generates multicoulour interleaved picosecond pulses with arbitrary spacing and wavelengths within the visible spectrum. This simple, yet robust configuration can be used as a versatile source for PIE experiments, as an alternative to an array of picosecond lasers and drivers.

© 2013 OSA

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:

Original Manuscript: October 31, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 7, 2012
Published: February 4, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Linnea Olofsson and Emmanuel Margeat, "Pulsed interleaved excitation fluorescence spectroscopy with a supercontinuum source," Opt. Express 21, 3370-3378 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science283(5408), 1676–1683 (1999). [CrossRef] [PubMed]
  2. X. S. Xie and J. K. Trautman, “Optical studies of single molecules at room temperature,” Annu. Rev. Phys. Chem.49(1), 441–480 (1998). [CrossRef] [PubMed]
  3. T. Ha, T. Enderle, D. F. Ogletree, D. S. Chemla, P. R. Selvin, and S. Weiss, “Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor,” Proc. Natl. Acad. Sci. U.S.A.93(13), 6264–6268 (1996). [CrossRef] [PubMed]
  4. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system : measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett.29(11), 705–708 (1972). [CrossRef]
  5. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers13(1), 1–27 (1974). [CrossRef]
  6. P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy. An introduction to its concepts and applications,” Spectroscopy 1–33 (2009).
  7. E. Haustein and P. Schwille, “Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy,” Methods29(2), 153–166 (2003). [CrossRef] [PubMed]
  8. E. Margeat, A. N. Kapanidis, P. Tinnefeld, Y. Wang, J. Mukhopadhyay, R. H. Ebright, and S. Weiss, “Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes,” Biophys. J.90(4), 1419–1431 (2006). [CrossRef] [PubMed]
  9. A. N. Kapanidis, N.-K. Lee, T. A. Laurence, S. Doose, E. Margeat, and S. Weiss, “Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules,” Proc. Natl. Acad. Sci. U.S.A.101(24), 8936–8941 (2004). [CrossRef] [PubMed]
  10. T. A. Laurence, X. Kong, M. Jäger, and S. Weiss, “Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins,” Proc. Natl. Acad. Sci. U.S.A.102(48), 17348–17353 (2005). [CrossRef] [PubMed]
  11. B. K. Müller, E. Zaychikov, C. Bräuchle, and D. C. Lamb, “Pulsed interleaved excitation,” Biophys. J.89(5), 3508–3522 (2005). [CrossRef] [PubMed]
  12. E. Thews, M. Gerken, R. Eckert, J. Zäpfel, C. Tietz, and J. Wrachtrup, “Cross talk free fluorescence cross correlation spectroscopy in live cells,” Biophys. J.89(3), 2069–2076 (2005). [CrossRef] [PubMed]
  13. P. Kapusta, M. Wahl, A. Benda, M. Hof, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy,” J. Fluoresc.17(1), 43–48 (2006). [CrossRef] [PubMed]
  14. M. Böhmer, M. Wahl, H. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys.353, 439–445 (2002).
  15. V. Kudryavtsev, M. Sikor, S. Kalinin, D. Mokranjac, C. A. M. Seidel, and D. C. Lamb, “Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements,” Chem Phys. Chem.13, 1060–1078 (2012).
  16. R. Fenske, D. Näther, M. Goossens, and S. D. Smith, “New light sources for time-correlated single-photon counting in commercially available spectrometers,” Proc. SPIE6372, 63720H (2006). [CrossRef]
  17. D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express16(13), 9614–9621 (2008). [CrossRef] [PubMed]
  18. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. Lanigan, G. Kennedy, M. A. Neil, and P. M. French, “Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging,” Opt. Lett.33(2), 113–115 (2008). [CrossRef] [PubMed]
  19. R. Mercatelli, S. Soria, G. Molesini, F. Bianco, G. Righini, and F. Quercioli, “Supercontinuum source tuned by an on-axis monochromator for fluorescence lifetime imaging,” Opt. Express18(19), 20505–20511 (2010). [CrossRef] [PubMed]
  20. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett.28(13), 1123–1125 (2003). [CrossRef] [PubMed]
  21. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M.-C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt.48(3), 553–559 (2009). [CrossRef] [PubMed]
  22. P. J. Rothwell, S. Berger, O. Kensch, S. Felekyan, M. Antonik, B. M. Wöhrl, T. Restle, R. S. Goody, and C. A. Seidel, “Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes,” Proc. Natl. Acad. Sci. U.S.A.100(4), 1655–1660 (2003). [CrossRef] [PubMed]
  23. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys.65(2), 251–297 (2002). [CrossRef]
  24. J. R. Unruh, G. Gokulrangan, G. S. Wilson, and C. K. Johnson, “Fluorescence properties of fluorescein, tetramethylrhodamine and Texas Red linked to a DNA aptamer,” Photochem. Photobiol.81(3), 682–690 (2005). [CrossRef] [PubMed]
  25. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J.72(4), 1878–1886 (1997). [CrossRef] [PubMed]
  26. K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods3, 83–89 (2006).
  27. M. Zhao, L. Jin, B. Chen, Y. Ding, H. Ma, and D. Chen, “Afterpulsing and its correction in fluorescence correlation spectroscopy experiments,” Appl. Opt.42(19), 4031–4036 (2003). [CrossRef] [PubMed]
  28. E. Sisamakis, A. Valeri, S. Kalinin, P. J. Rothwell, and C. A. Seidel, “Accurate single-molecule FRET studies using multiparameter fluorescence detection,” Methods Enzymol.475, 455–514 (2010). [CrossRef] [PubMed]
  29. J. Enderlein and I. Gregor, “Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy,” Rev. Sci. Instrum.76(3), 033102 (2005). [CrossRef]
  30. S. Felekyan, S. Kalinin, H. Sanabria, A. Valeri, and C. A. Seidel, “Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules,” ChemPhysChem13(4), 1036–1053 (2012). [CrossRef] [PubMed]
  31. C. M. Pieper and J. Enderlein, “Fluorescence correlation spectroscopy as a tool for measuring the rotational diffusion of macromolecules,” Chem. Phys. Lett.516(1-3), 1–11 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited