OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

An absorption-based superconducting nano-detector as a near-field optical probe

Qiang Wang and Michiel J. A. de Dood  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3682-3692 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2515 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the use of a superconducting nano-detector as a novel near-field probe. In contrast to conventional scanning near-field optical microscopes, the nano-detector absorbs and detects photons in the near-field. We show that this absorption-based probe has a higher collection efficiency and investigate the details of the interaction between the nano detector and the dipole emitter. To this end, we introduce a multipole model to describe the interaction. Calculations of the local density of states show that the nano-detector does not strongly modify the emission rate of a dipole, especially when compared to traditional metal probes.

© 2013 OSA

OCIS Codes
(230.0040) Optical devices : Detectors
(270.5570) Quantum optics : Quantum detectors
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: December 3, 2012
Revised Manuscript: January 26, 2013
Manuscript Accepted: January 26, 2013
Published: February 6, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Qiang Wang and Michiel J. A. de Dood, "An absorption-based superconducting nano-detector as a near-field optical probe," Opt. Express 21, 3682-3692 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99(10), 2891–2928 (1999). [CrossRef] [PubMed]
  2. V. Sandoghdar, B. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” in Photonic Crystals: Advances in Design, Fabrication, and Characterization, K. Busch, S. Lölkes, R. B. Wehrspohn and H. Föll eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
  3. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004). [CrossRef] [PubMed]
  4. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001). [CrossRef] [PubMed]
  5. B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000). [CrossRef]
  6. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996). [CrossRef]
  7. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993). [CrossRef] [PubMed]
  8. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  9. D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010). [CrossRef] [PubMed]
  10. A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005). [CrossRef] [PubMed]
  11. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994). [CrossRef]
  12. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001). [CrossRef] [PubMed]
  13. T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000). [CrossRef] [PubMed]
  14. Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).
  15. J. Smajic and C. Hafner, “Numerical analysis of a SNOM tip based on a partially cladded optical fiber,” Opt. Express19(23), 23140–23152 (2011). [CrossRef] [PubMed]
  16. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  17. I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000). [CrossRef]
  18. C. F. Bohren and D. R. Huffman, “Particles small compared with the wavelength,” in Absorption and scattering of light by small particles. (Wiley & Sons, 1983).
  19. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000). [CrossRef]
  20. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1998).
  21. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009). [CrossRef]
  22. M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012). [CrossRef] [PubMed]
  23. A. J. L. Adam, N. C. J. van der Valk, and P. C. M. Planken, “Measurement and calculation of the near field of a terahertz apertureless scanning optical microscope,” J. Opt. Soc. Am. B24(5), 1080–1090 (2007). [CrossRef]
  24. J. D. Jackson, “Multipoles, electrostatics of macroscopic media, dielectrics,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  25. L. Novotny and B. Hecht, “Dipole emission near planar interfaces,” in Principles of Nano-optics. (Cambridge University Press, 2006).
  26. J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  27. J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  28. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1(2), 693–701 (1970). [CrossRef]
  29. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.12, 165–232 (1974).
  30. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  31. K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003). [CrossRef]
  32. K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited