OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Nanoplatform-based optical contrast enhancement in epithelial tissues: Quantitative analysis via Monte Carlo simulations and implications on precancer diagnostics

Dizem Arifler  »View Author Affiliations

Optics Express, Vol. 21, Issue 3, pp. 3693-3707 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1993 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a comprehensive computational analysis of the spectral optical response of epithelial tissues labeled with gold nanoparticles. Monte Carlo modeling is employed to simulate nanoparticle-induced changes in reflectance signals and to assess whether labeling can generate sufficient exogenous contrast that can better pinpoint precancer progression. Simulation results suggest that the observed contrast profile is highly dependent on a series of factors including the labeling scheme, optical sensor geometry, and wavelength. It is evident, however, that selection of an optimal labeling and sensing strategy can lead to a significant enhancement of the inherent positive or negative contrast and can improve the diagnostic potential of optical measurements.

© 2013 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(160.4236) Materials : Nanomaterials

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 4, 2012
Revised Manuscript: January 30, 2013
Manuscript Accepted: January 31, 2013
Published: February 6, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Dizem Arifler, "Nanoplatform-based optical contrast enhancement in epithelial tissues: Quantitative analysis via Monte Carlo simulations and implications on precancer diagnostics," Opt. Express 21, 3693-3707 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007). [CrossRef] [PubMed]
  2. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003). [PubMed]
  3. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett.30(9), 1012–1014 (2005). [CrossRef] [PubMed]
  4. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007). [CrossRef] [PubMed]
  5. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009). [CrossRef]
  6. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012). [CrossRef] [PubMed]
  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  8. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998). [CrossRef] [PubMed]
  9. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998). [CrossRef] [PubMed]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003). [CrossRef]
  11. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  12. Y. Hu, R. C. Fleming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express16(24), 19579–19591 (2008). [CrossRef] [PubMed]
  13. A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011). [CrossRef]
  14. N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007). [CrossRef] [PubMed]
  15. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007). [CrossRef]
  16. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005). [CrossRef] [PubMed]
  17. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008). [CrossRef] [PubMed]
  18. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009). [CrossRef] [PubMed]
  19. C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011). [CrossRef] [PubMed]
  20. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009). [CrossRef] [PubMed]
  21. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006). [CrossRef] [PubMed]
  22. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett.21(16), 1310–1312 (1996). [CrossRef] [PubMed]
  23. C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008). [CrossRef] [PubMed]
  24. J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996). [CrossRef] [PubMed]
  25. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009). [CrossRef] [PubMed]
  26. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011). [CrossRef] [PubMed]
  27. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009). [CrossRef] [PubMed]
  28. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited