OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Filters with random transmittance for improving resolution in filter-array-based spectrometers

J. Oliver, Woong-Bi Lee, and Heung-No Lee  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 3969-3989 (2013)
http://dx.doi.org/10.1364/OE.21.003969


View Full Text Article

Enhanced HTML    Acrobat PDF (1554 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we introduce a method for improving the resolution of miniature spectrometers. Our method is based on using filters with random transmittance. Such filters sense fine details of an input signal spectrum, which, when combined with a signal processing algorithm, aid in improving resolution. We also propose an approach for designing filters with random transmittance using optical thin-film technology. We demonstrate that the improvement in resolution is 7-fold when using the filters with random transmittance over what was achieved in our previous work.

© 2013 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Spectroscopy

History
Original Manuscript: October 11, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: January 13, 2013
Published: February 11, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
J. Oliver, Woong-Bi Lee, and Heung-No Lee, "Filters with random transmittance for improving resolution in filter-array-based spectrometers," Opt. Express 21, 3969-3989 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-4-3969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Brady, Optical Imaging and Spectroscopy (John and Wiley Sons, 2009).
  2. S. W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett.32(6), 632–634 (2007). [CrossRef] [PubMed]
  3. W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997).
  4. H. N. Lee, Introduction to Compressed Sensing (Lecture notes; Spring Semester, GIST, Korea, 2011). http://infonet.gist.ac.kr/?page_id=843
  5. J. Oliver, W. B. Lee, S. J. Park, and H. N. Lee, “Improving resolution of miniature spectrometers by exploiting sparse nature of signals,” Opt. Express20(3), 2613–2625 (2012). [CrossRef] [PubMed]
  6. C. C. Chang, N. T. Lin, U. Kurokawa, and B. I. I. Choi, “Spectrum reconstruction for filter-array spectrum sensor from sparse template selection,” Opt. Eng.50(11), 114402 (2011). [CrossRef]
  7. C. C. Chang and H. N. Lee, “On the estimation of target spectrum for filter-array based spectrometer,” Opt. Express16(2), 1056–1061 (2008). [CrossRef]
  8. U. Kurokawa, B. I. Choi, and C.-C. Chang, “Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization,” IEEE Sens. J.11(7), 1556–1563 (2011). [CrossRef]
  9. C. Bendjaballah, “Information rates in optical channels,” Opt. Commun.17(1), 55–58 (1976). [CrossRef]
  10. Y. Aizu, K. Ogino, and T. Asakura, “A laser velocimeter using a random pattern,” Opt. Commun.64(3), 205–210 (1987). [CrossRef]
  11. J. Ojeda-Castañeda and A. Sauceda, “Random gratings as correlator sensors,” Opt. Lett.22(5), 257–258 (1997). [CrossRef] [PubMed]
  12. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).
  13. R. Baraniuk, “Compressive sensing,” IEEE Sig. Proc. Mag.24(4), 118–121 (2007). [CrossRef]
  14. E. Candes and J. Romberg, “11-magic: Recovery of sparse signals via convex programming,” Technical report (2005). http://users.ece.gatech.edu/~justin/l1magic/
  15. S. Park and H. N. Lee, “Designing an algorithm to solve basis pursuit denoising with a nonnegative constraint,” IEEE Sig. Proc. Letters. (submitted to).
  16. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc., B58, 267–288 (1996).
  17. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Ima. Sciences2(1), 183–202 (2009). [CrossRef]
  18. A. Juditsky and A. Nemirovski, “First Order Methods for Nonsmooth Convex Large-Scale Optimization, I: General Purpose Methods,” in Optimization for Machine Learning, S. Sra, S. Nowozin, and S.J. Write, eds. (MIT Press, 2011), pp. 1–28.
  19. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Founda. and Tren. Mach. Learn.3(1), 1–122 (2010). [CrossRef]
  20. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Sig. Proc. Mag.25(2), 83–91 (2008). [CrossRef]
  21. R. Dikpal, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable pixel compressive camera for high speed imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 329–336.
  22. C. Li, T. Sun, K. Kelly, and Y. Zhang, “A compressive sensing and unmixing scheme for hyperspectral data processing,” Technical report. ( http://www.caam.rice.edu/~zhang/reports/tr1101.pdf ).
  23. A. Rajwade, D. Kittle, T.-H. Tsai, D. Brady, and L. Carin, “Coded hyperspectral imaging and blind compressive sensing,” submitted (2012).
  24. K. Madanipour and M. T. Tavassoly, “Determination of modulation transfer function of a printer by measuring the autocorrelation of the transmission function of a printed Ronchi grating,” Appl. Opt.48(4), 725–729 (2009). [CrossRef] [PubMed]
  25. J. R. Barry and J. M. Kahn, “Link design for non-directed wireless infrared communications,” Appl. Opt.34(19), 3764–3776 (1995). [CrossRef] [PubMed]
  26. H. A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, 2002).
  27. Z. B. Haim, Y. C. Eldar, and M. Elad, “Coherence-based performance guarantees for estimating a sparse vector under random noise,” IEEE Trans Sig. Proc.58, 5030–5043 (2010).
  28. C. Z. Microscopy, “Fundamentals of mercury arc lamps,” http://zeiss-campus.magnet.fsu.edu/articles/lightsources/mercuryarc.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited