OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Schottky-contact plasmonic dipole rectenna concept for biosensing

Mohammad Alavirad, Saba Siadat Mousavi, Langis Roy, and Pierre Berini  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4328-4347 (2013)
http://dx.doi.org/10.1364/OE.21.004328


View Full Text Article

Enhanced HTML    Acrobat PDF (1759 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating ”hot” carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of −12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

© 2013 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Sensors

History
Original Manuscript: December 10, 2012
Revised Manuscript: January 17, 2013
Manuscript Accepted: January 18, 2013
Published: February 12, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Mohammad Alavirad, Saba Siadat Mousavi, Langis Roy, and Pierre Berini, "Schottky-contact plasmonic dipole rectenna concept for biosensing," Opt. Express 21, 4328-4347 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-4-4328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), 1st ed.
  2. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett.77, 1889–1892 (1996). [CrossRef] [PubMed]
  3. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B54, 6227–6244 (1996). [CrossRef]
  4. S. S. Mousavi, P. Berini, and D. McNamara, “Periodic plasmonic nanoantennas in a piecewise homogeneous background,” Opt. Express20, 18044–18065 (2012). [CrossRef] [PubMed]
  5. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New Journal of Physics10, 105010 (2008). [CrossRef]
  6. F. J. Rodriguez-Fortuno, M. Martinez-Marco, B. Tomas-Navarro, R. Ortuno, J. Marti, A. Martinez, and P. J. Rodriguez-Canto, “Highly-sensitive chemical detection in the infrared regime using plasmonic gold nanocrosses,” Applied Physics Letters98, 133118 (2011). [CrossRef]
  7. C.-Y. Tsai, S.-P. Lu, J.-W. Lin, and P.-T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Applied Physics Letters98, 153108 (2011). [CrossRef] [PubMed]
  8. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat Photon1, 641–648 (2007). [CrossRef]
  9. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61, 10484–10503 (2000). [CrossRef]
  10. E. M. Larsson, J. Alegret, M. Kll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Letters7, 1256–1263 (2007). [CrossRef] [PubMed]
  11. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Applied Physics Letters41, 906–908 (1982). [CrossRef]
  12. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Letters6, 683–688 (2006). [CrossRef] [PubMed]
  13. M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “Local refractive index sensitivity of plasmonic nanoparticles,” Opt. Express19, 9213–9220 (2011). [CrossRef] [PubMed]
  14. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332, 702–704 (2011). [CrossRef] [PubMed]
  15. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Letters6, 827–832 (2006). PMID: . [CrossRef] [PubMed]
  16. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” The Journal of Physical Chemistry B109, 21556–21565 (2005). [CrossRef]
  17. F. Mazzotta, G. Wang, C. Hgglund, F. Hk, and M. P. Jonsson, “Nanoplasmonic biosensing with on-chip electrical detection,” Biosensors and Bioelectronics26, 1131 – 1136 (2010). [CrossRef] [PubMed]
  18. L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express19, 9962–9967 (2011). [CrossRef] [PubMed]
  19. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat Mater11, 69–75 (2012). [CrossRef]
  20. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon fabry-perot photode-tectors based on the internal photoemission effect at 1550 nm,” Opt. Express20, 12599–12609 (2012). [CrossRef] [PubMed]
  21. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Applied Physics Letters46, 915–917 (1985). [CrossRef]
  22. C. Daboo, M. Baird, H. H. N. Apsley, and M. Emeny, “Improved surface plasmon enhanced photodetection at an augaas schottky junction using a novel molecular beam epitaxy grown otto coupling structure,” Thin Solid Films201, 9 – 27 (1991). [CrossRef]
  23. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide schottky detector,” Opt. Express18, 8505–8514 (2010). [CrossRef] [PubMed]
  24. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express19, 15843–15854 (2011). [CrossRef] [PubMed]
  25. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon schot-tky detector for telecom regime,” Nano Letters11, 2219–2224 (2011). [CrossRef] [PubMed]
  26. E. S. Barnard, R. A. Pala, and M. L. Brongersma, “Photocurrent mapping of near-field optical antenna resonances,” Nat Nano6, 588–593 (2011). [CrossRef]
  27. J. McSpadden, L. Fan, and K. Chang, “Design and experiments of a high-conversion-efficiency 5.8-ghz rectenna,” Microwave Theory and Techniques, IEEE Transactions on46, 2053 –2060 (1998). [CrossRef]
  28. FDTD Solutions (Lumerical Solutions Inc.).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. D. J. Segelstein, “The complex refractive index of water,” Master’s thesis, University of Missouri, Kansas City, Missouri, USA (1981).
  31. R. Soref and B. Bennett, “Electrooptical effects in silicon,” Quantum Electronics, IEEE Journal of23, 123 – 129 (1987). [CrossRef]
  32. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Letters4, 899–903 (2004). [CrossRef]
  33. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” Quantum Electronics, IEEE Journal of46, 633 –643 (2010). [CrossRef]
  34. R. N. Stuart, F. Wooten, and W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett.10, 119–119 (1963). [CrossRef]
  35. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006), 3rd ed. [CrossRef]
  36. A. Akbari, A. Olivieri, and P. Berini, “Sub-bandgap asymmetric surface plasmon waveguide schottky detectors on silicon,” Accepted for publication in Sel. Top. Quantum Electronics, IEEE Journal of (2013).
  37. S. J. Zalyubovskiy, M. Bogdanova, A. Deinega, Y. Lozovik, A. D. Pris, K. H. An, W. P. Hall, and R. A. Potyrailo, “Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor,” J. Opt. Soc. Am. A29, 994–1002 (2012). [CrossRef]
  38. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews108, 462–493 (2008). PMID: . [CrossRef] [PubMed]
  39. V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Optical and Quantum Electronics32, 899–908 (2000). [CrossRef]
  40. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat Photon2, 226–229 (2008). [CrossRef]
  41. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961), 1st ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited