OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 3 — Apr. 4, 2013

Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection

Sylvanus Y. Lee, Gary F. Walsh, and Luca Dal Negro  »View Author Affiliations

Optics Express, Vol. 21, Issue 4, pp. 4945-4957 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1681 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate successful integration of aperiodic arrays of metal nanoparticles with microfluidics technology for optical sensing using the spectral-colorimetric responses of nanostructured arrays to refractive index variations. Different aperiodic arrays of gold (Au) nanoparticles with varying interparticle separations and Fourier spectral properties are fabricated using Electron Beam Lithography (EBL) and integrated with polydimethylsiloxane (PDMS) microfluidics structures by soft-lithographic micro-imprint techniques. The spectral shifts of scattering spectra and the distinctive modifications of structural color patterns induced by refractive index variations were simultaneously measured inside microfluidic flow cells by dark-field spectroscopy and image correlation analysis in the visible spectral range. The integration of engineered aperiodic arrays of Au nanoparticles with microfluidics devices provides a novel sensing platform with multiplexed spatial-spectral responses for opto-fluidics applications and lab-on-a-chip optical biosensing.

© 2013 OSA

OCIS Codes
(290.3030) Scattering : Index measurements
(330.1710) Vision, color, and visual optics : Color, measurement
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: November 8, 2012
Revised Manuscript: February 12, 2013
Manuscript Accepted: February 14, 2013
Published: February 21, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Sylvanus Y. Lee, Gary F. Walsh, and Luca Dal Negro, "Microfluidics integration of aperiodic plasmonic arrays for spatial-spectral optical detection," Opt. Express 21, 4945-4957 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. S. Ligler, “Perspective on optical biosensors and integrated sensor systems,” Anal. Chem.81(2), 519–526 (2009). [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science298(5593), 580–584 (2002). [CrossRef] [PubMed]
  3. J. Y. Zhang, J. Do, W. R. Premasiri, L. D. Ziegler, and C. M. Klapperich, “Rapid point-of-care concentration of bacteria in a disposable microfluidic device using meniscus dragging effect,” Lab Chip10(23), 3265–3270 (2010). [CrossRef] [PubMed]
  4. A. A. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput.48(10), 999–1014 (2010). [CrossRef] [PubMed]
  5. J. Kim, M. Johnson, P. Hill, and B. K. Gale, “Microfluidic sample preparation: cell lysis and nucleic acid purification,” Integr Biol (Camb)1(10), 574–586 (2009). [CrossRef] [PubMed]
  6. S. H. Pfeil, C. E. Wickersham, A. Hoffmann, and E. A. Lipman, “A microfluidic mixing system for single-molecule measurements,” Rev. Sci. Instrum.80(5), 055105–055109 (2009). [CrossRef] [PubMed]
  7. J. Y. Zhang, Q. Cao, M. Mahalanabis, and C. M. Klapperich, “Integrated microfluidic sample preparation for chip based molecular diagnostics.,” in Microfluidic Applications for Human Health, U. Demirci, A. Khademhosseini, R. Langer, and J. Blander, eds. (World Scientific Publishing Co., Hackensack, NJ, USA, 2012).
  8. H. M. Hiep, T. Endo, K. Kermam, M. Chikae, D.-K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya, “A localized surface plasmon resonance based immunosensor for the detection of casein in milk,” Sci. Technol. Adv. Mater.8(4), 331–338 (2007). [CrossRef]
  9. L. Yang, B. Yan, W. R. Premasiri, L. D. Ziegler, L. D. Negro, and B. M. Reinhard, “Engineering nanoparticle cluster arrays for bacterial biosensing: the role of the building block in multiscale SERS substrates,” Adv. Funct. Mater.20(16), 2619–2628 (2010). [CrossRef]
  10. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology14(8), 907–912 (2003). [CrossRef]
  11. X. Fan, Advanced photonic structure for biological and chemical detection (Springer, 2009).
  12. A. Ksendzov and Y. Lin, “Integrated optics ring-resonator sensors for protein detection,” Opt. Lett.30(24), 3344–3346 (2005). [CrossRef] [PubMed]
  13. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  14. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002). [CrossRef]
  15. J. J. Amsden, H. Perry, S. V. Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, “Spectral analysis of induced color change on periodically nanopatterned silk films,” Opt. Express17(23), 21271–21279 (2009). [CrossRef] [PubMed]
  16. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  17. I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express15(25), 17433–17442 (2007). [CrossRef] [PubMed]
  18. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, “Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing,” Nano Lett.12(2), 602–609 (2012). [CrossRef] [PubMed]
  19. T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip11(21), 3596–3602 (2011). [CrossRef] [PubMed]
  20. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem.73(18), 4491–4498 (2001). [CrossRef] [PubMed]
  21. R. M. Connatser, L. A. Riddle, and M. J. Sepaniak, “Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection,” J. Sep. Sci.27(17-18), 1545–1550 (2004). [CrossRef] [PubMed]
  22. K. W. Kho, K. Z. M. Qing, Z. X. Shen, I. B. Ahmad, S. S. C. Lim, S. Mhaisalkar, T. J. White, F. Watt, K. C. Soo, and M. Olivo, “Polymer-based microfluidics with surface-enhanced Raman-spectroscopy-active periodic metal nanostructures for biofluid analysis,” J. Biomed. Opt.13(5), 054026 (2008). [CrossRef] [PubMed]
  23. N. A. Abu-Hatab, J. F. John, J. M. Oran, and M. J. Sepaniak, “Multiplexed microfluidic surface-enhanced Raman spectroscopy,” Appl. Spectrosc.61(10), 1116–1122 (2007). [CrossRef] [PubMed]
  24. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Photonic crystal resonator integrated in a microfluidic system,” Opt. Lett.33(14), 1623–1625 (2008). [CrossRef] [PubMed]
  25. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett.31(1), 59–61 (2006). [CrossRef] [PubMed]
  26. B. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B81, 316–328 (2002).
  27. C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006). [CrossRef] [PubMed]
  28. S. Y. Lee, J. J. Amsden, S. V. Boriskina, A. Gopinath, A. Mitropolous, D. L. Kaplan, F. G. Omenetto, and L. D. Negro, “Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles,” Proc. Natl. Acad. Sci. U.S.A.107(27), 12086–12090 (2010). [CrossRef] [PubMed]
  29. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photonics Rev. 178–218 (2011).
  30. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011). [CrossRef] [PubMed]
  31. S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011). [CrossRef] [PubMed]
  32. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012). [CrossRef] [PubMed]
  33. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. D. Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Lett.8(8), 2423–2431 (2008). [CrossRef] [PubMed]
  34. L. Dal Negro, N. N. Feng, and A. Gopinath, “Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays,” J. Opt. A Pure Appl. Op. 10, 064013 (2008).
  35. O. Dial, C. C. Cheng, and A. Scherer, “Fabrication of high-density nanostructures by electron beam lithography,” J. Vac. Sci. Technol. B16(6), 3887–3890 (1998). [CrossRef]
  36. D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, and L. Dal Negro, “Direct transfer of sub-wavelength plasmonic nanostructures on bio-active silk films,” Adv. Mater. (Deerfield Beach Fla.)24(45), 6088–6093 (2012). [CrossRef]
  37. F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng.53(1-4), 163–166 (2000). [CrossRef]
  38. S. V. Boriskina and L. Dal Negro, “Sensitive label-free biosensing using critical modes in aperiodic photonic structures,” Opt. Express16(17), 12511–12522 (2008). [CrossRef] [PubMed]
  39. S. V. Boriskina, S. Y. K. Lee, J. J. Amsden, F. G. Omenetto, and L. Dal Negro, “Formation of colorimetric fingerprints on nano-patterned deterministic aperiodic surfaces,” Opt. Express18(14), 14568–14576 (2010). [CrossRef] [PubMed]
  40. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008). [CrossRef] [PubMed]
  41. D. A. Cox, Galois theory (Wiley-Interscience, 2004).
  42. M. R. Schroeder, Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity (Springer, 2009).
  43. E. W. Weisstein, “Gaussian prime” (From MathWorld–A Wolfram Web Resource), retrieved http://mathworld.wolfram.com/GaussianPrime.html .
  44. J. Stillwell, Elements of number theory (Springer, 2003).
  45. E. Gethner, S. Wagon, and B. Wick, “A stroll through the Gaussian primes,” Am. Math. Mon.105(4), 327–337 (1998). [CrossRef]
  46. G. Hardy and J. Littlewood, “Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes,” Acta Math.44(1), 1–70 (1923). [CrossRef]
  47. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization of optics: quasiperiodic media,” Phys. Rev. Lett.58(23), 2436–2438 (1987). [CrossRef] [PubMed]
  48. S. Katsumoto, N. Sano, and S.-i. Kobayashi, “Electron propagation through a fibonacci lattice,” Solid State Commun.85(3), 223–226 (1993). [CrossRef]
  49. E. Maciá, “Physical nature of critical modes in Fibonacci quasicrystals,” Phys. Rev. B60(14), 10032–10036 (1999). [CrossRef]
  50. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett.90(5), 055501 (2003). [CrossRef] [PubMed]
  51. D. E. Newland, AniIntroduction to random vibrations, spectral and wavelet analysis (John Wiley & Sons, Incorporated, 1993).
  52. N. O. Petersen, P. L. Höddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson, “Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application,” Biophys. J.65(3), 1135–1146 (1993). [CrossRef] [PubMed]
  53. P. W. Wiseman and N. O. Petersen, “Image correlation spectroscopy. II. optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells,” Biophys. J.76(2), 963–977 (1999). [CrossRef] [PubMed]
  54. C.-H. Choi, U. Ulmanella, J. Kim, C.-M. Ho, and C.-J. Kim, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,” Phys. Fluids18(8), 087105–087108 (2006). [CrossRef]
  55. J. Davies, D. Maynes, B. W. Webb, and B. Woolford, “Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs,” Phys. Fluids18(8), 087110–087111 (2006). [CrossRef]
  56. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005). [CrossRef]
  57. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci.137(1), 11–24 (1990). [CrossRef]
  58. A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, “Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng.15(5), 928–934 (2005). [CrossRef]
  59. M. Polyanskiy, “RefractiveIndex.INFO” (2008), retrieved http://refractiveindex.info/?group=LIQUIDS&material=Glycerol .
  60. B. Cunningham, J. Qiu, P. Li, and B. Lin, “Enhancing the surface sensitivity of colorimetric resonant optical biosensors,” Sens. Actuators B87, 365–370 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited