OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging

Jeongtae Kim and Jiyeong Seok  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6061-6075 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (906 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the statistical properties of the maximum likelihood estimator, least squares estimator, and Pearson’s χ2-based and Neyman’s χ2-based estimators for the estimation of decay constants and amplitudes for fluorescence lifetime imaging. Our analysis is based on the linearization of the gradient of the objective functions around true parameters. The analysis shows that only the maximum likelihood estimator based on the Poisson likelihood function yields unbiased and efficient estimation. All other estimators yield either biased or inefficient estimations. We validate our analysis by using simulations.

© 2013 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(180.2520) Microscopy : Fluorescence microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: January 3, 2013
Revised Manuscript: February 23, 2013
Manuscript Accepted: February 24, 2013
Published: March 4, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Jeongtae Kim and Jiyeong Seok, "Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging," Opt. Express 21, 6061-6075 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999). [CrossRef]
  2. H. E. Grecco, P. Roda-Navarro, and P. J. Verveer, “Global analysis of time correlated single photon counting FRET-FLIM data,” Opt. Express17, 6493–6508 (2009). [CrossRef] [PubMed]
  3. S. Kumar, C. Dunsby, P. A. A. D. Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French, “Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging,” Opt. Express15, 12548–12561 (2007). [CrossRef] [PubMed]
  4. B. B. Collier and M. J. McShane, “Dynamic windowing algorithm for the fast and accurate determination of luminescence lifetimes,” Anal. Chem.84, 4725–4731 (2012). [CrossRef] [PubMed]
  5. H. Cramer, Mathematical Methods of Statistics (Princeton University, 1999).
  6. S. Laptenok, K. M. Mullen, J. W. Borst, I. H. M. van Stokkum, V. V. Apanasovich, and A. J. W. G. Visser, “Fluorescence lifetime imaging microscopy (FLIM) data analysis with TIMP,” J. Stat. Softw.18, 1–20 (2007).
  7. S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.” Biophys. J.87, 2807–17 (2004). [CrossRef] [PubMed]
  8. N. Boens, W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J.-P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79, 2137–2149 (2007). [CrossRef] [PubMed]
  9. P. J. Steinbach, R. Ionescu, and C. R. Matthews, “Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding,” Biophys. J.82, 2244–2255 (2002). [CrossRef] [PubMed]
  10. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++ - The Art of Scientific Computing (Cambridge University, 2002).
  11. T. Hauschild and M. Jentschel, “Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments,” Nucl. Instrum. Meth. A457, 384–401 (2001). [CrossRef]
  12. M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and C. A. M. Seidel, “An experimental comparison of the maximum likelihood estimation and nonlinear least-squares fluorescence lifetime analysis of single molecules,” Anal. Chem.73, 2078–2086 (2001). [CrossRef] [PubMed]
  13. K. A. Walther, B. Papke, M. B. Sinn, K. Michel, and A. Kinkhabwala, “Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy,” Mol. BioSyst.7, 322–336 (2011). [CrossRef] [PubMed]
  14. J. Tellinghuisen and C. W. Wilkerson, “Bias and precision in the estimation of exponential decay parameters from sparse data,” Anal. Chem.65, 1240–1246 (1993). [CrossRef]
  15. J. Fessler, “Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography,” IEEE Trans. Image Process.5, 493 –506 (1996). [CrossRef] [PubMed]
  16. J. Kim and J. Fessler, “Intensity-based image registration using robust correlation coefficients,” IEEE Trans. Med. Imag.23, 1430 –1444 (2004). [CrossRef]
  17. H. Van Trees, Detection, Estimation, and Modulation Theory, Part 1 (John Wiley & Sons, 2001).
  18. T. G., “A matrix extension of the cauchy-schwarz inequality,” Econ. Lett.63, 1–3 (1999). [CrossRef]
  19. P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem.85, 2941–2946 (1981). [CrossRef]
  20. K. J. Mighell, “Parameter estimation in astronomy with poisson-distributed data. I. the χγ2 statistic,” The Astrophys. J.518, 380 (1999). [CrossRef]
  21. J. Moré and D. Sorensen, “Computing a trust region step,” SIAM J. Sci. Comput.4, 553–572 (1983). [CrossRef]
  22. M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems,” SIAM J. Sci. Comput.21, 1–23 (1999). [CrossRef]
  23. R. Byrd, R. Schnabel, and G. Shultz, “Approximate solution of the trust region problem by minimization over two-dimensional subspaces,” Math. Program.40, 247–263 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited