OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Impact of computational methods and spectral models on the retrieval of optical properties via spectral optimization

Shaohui Huang, Yonghong Li, Shaoping Shang, and Shaoling Shang  »View Author Affiliations

Optics Express, Vol. 21, Issue 5, pp. 6257-6273 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (6285 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral optimization algorithm (SOA) is a well-accepted scheme for the retrieval of water constituents from the measurement of ocean color radiometry. It defines an error function between the input and output remote sensing reflectance spectrum, with the latter modeled with a few variables that represent the optically active properties, while the variables are solved numerically by minimizing the error function. In this paper, with data from numerical simulations and field measurements as input, we evaluate four computational methods for minimization (optimization) for their efficiency and accuracy on solutions, and illustrate impact of bio-optical models on the retrievals. The four optimization routines are the Levenberg-Marquardt (LM), the Generalized Reduced Gradient (GRG), the Downhill Simplex Method (Amoeba), and the Simulated Annealing-Downhill Simplex (i.e. SA + Amoeba, hereafter abbreviated as SAA). The Garver-Siegel-Maritorena SOA model is used as a base to test these computational methods. It is observed that 1) LM is the fastest method, but SAA has the largest number of valid retrievals; 2) the quality of final solutions are strongly influenced by the forms of spectral models (or eigen functions); and 3) dynamically-varying eigen functions are necessary to obtain smaller errors for both reflectance spectrum and retrievals. Results of this study provide helpful guidance for the selection of a computational method and spectral models if an SOA scheme is to be used to process ocean color images.

© 2013 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: February 8, 2013
Revised Manuscript: February 21, 2013
Manuscript Accepted: February 21, 2013
Published: March 5, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Shaohui Huang, Yonghong Li, Shaoping Shang, and Shaoling Shang, "Impact of computational methods and spectral models on the retrieval of optical properties via spectral optimization," Opt. Express 21, 6257-6273 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci.1(1), 19–42 (2009). [CrossRef] [PubMed]
  2. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang, ed., Reports of the International Ocean-Colour Coordinating Group, No.10, (IOCCG, Dartmouth, Canada, 2010).
  3. C. M. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res., Oceans117(C1), C01011 (2012). [CrossRef]
  4. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res., Oceans103(C11), 24937–24953 (1998). [CrossRef]
  5. R. Doerffer and H. Schiller, “The MERIS case 2 water algorithm,” Int. J. Remote Sens.28(3-4), 517–535 (2007). [CrossRef]
  6. F. E. Hoge and P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res., Oceans101(C7), 16631–16648 (1996). [CrossRef]
  7. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt.41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  8. R. Doerffer and J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case-ii waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res., Oceans99(C4), 7457–7466 (1994). [CrossRef]
  9. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Rem. Sens.41(6), 1378–1387 (2003). [CrossRef]
  10. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing Of Inland and Coastal Waters (CRC Press, 1995).
  11. E. Devred, S. Sathyendranath, V. Stuart, H. Maass, O. Ulloa, and T. Platt, “A two-component model of phytoplankton absorption in the open ocean: theory and applications,” J. Geophys. Res., Oceans111(C3), C03011 (2006). [CrossRef]
  12. Z. P. Lee, Visible-Infrared Remote-Sensing Model and Applications for Ocean Waters (University of South Florida, 1994).
  13. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt.41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  14. C. S. Roesler and M. J. Perry, “In-situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res., Oceans100(C7), 13279–13294 (1995). [CrossRef]
  15. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 2. deriving bottom depths and water properties by optimization,” Appl. Opt.38(18), 3831–3843 (1999). [CrossRef] [PubMed]
  16. S. Maritorena and D. A. Siegel, “Consistent merging of satellite ocean color data sets using a bio-optical model,” Remote Sens. Environ.94(4), 429–440 (2005). [CrossRef]
  17. J. Werdell, Global bio-optical algorithms for ocean color satelliteapplications: Inherent Optical Properties Algorithm Workshop at Ocean Optics XIX,” Eos Trans. AGU90, 4 (2008).
  18. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles19(1), 1006 (2005). [CrossRef]
  19. D. A. Siegel, S. Maritorena, N. B. Nelson, D. A. Hansell, and M. Lorenzi-Kayser, “Global ocean distribution and dynamics of colored dissolved and detrital organic materials,” J. Geophys. Res.107(C12), 3228 (2002). [CrossRef]
  20. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press. 1994)
  21. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res., Atmospheres93(D9), 10909–10924 (1988). [CrossRef]
  22. V. E. Brando, A. G. Dekker, Y. J. Park, and T. Schroeder, “Adaptive semianalytical inversion of ocean color radiometry in optically complex waters,” Appl. Opt.51(15), 2808–2833 (2012). [CrossRef] [PubMed]
  23. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt.36(24), 6035–6046 (1997). [CrossRef] [PubMed]
  24. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption-coefficients of natural phytoplankton - analysis and parameterization,” J. Geophys. Res., Oceans100(C7), 13321–13332 (1995). [CrossRef]
  25. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. I. a semianalytical model,” Appl. Opt.37(27), 6329–6338 (1998). [CrossRef] [PubMed]
  26. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr.26(1), 43–53 (1981). [CrossRef]
  27. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  28. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, “Modeling the spectral shape of absorption by chromophoric dissolved organic matter,” Mar. Chem.89(1-4), 69–88 (2004). [CrossRef]
  29. S. Sathyendranath, L. Prieur, and A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens.10(8), 1373–1394 (1989). [CrossRef]
  30. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr.47(2), 404–417 (2002). [CrossRef]
  31. P. Wang, E. S. Boss, and C. Roesler, “Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color,” Appl. Opt.44(19), 4074–4085 (2005). [CrossRef] [PubMed]
  32. K. Levenberg, “A method for the solution of certain non-linear problems in least squares,” Q. Appl. Math.2, 164–168 (1944).
  33. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math.11(2), 431–441 (1963). [CrossRef]
  34. J. Abadie and J. Carpentier, “Generalization of the wolfe reduced gradient method to the case of nonlinear constraints,” in Optimization, R. Fletcher, ed. (Academic Press, 1969).
  35. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J.7(4), 308–313 (1965). [CrossRef]
  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the art of scientific computing, 2nd ed. (Cambridge University Press, 1992).
  37. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science220(4598), 671–680 (1983). [CrossRef] [PubMed]
  38. C. D. Mobley, Hydrolight 3.0 Users’ Guide. SRI International (Menlo Park, California, 1995).
  39. P. J. Werdell and S. W. Bailey, “An improved bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ.98(1), 122–140 (2005). [CrossRef]
  40. IOCCG, Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Z.-P. Lee, ed., Reports of the International Ocean Colour Coordinating Group, No. 5, (IOCCG, Dartmouth, Canada, 2006).
  41. A. Morel, “Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible?” J. Geophys. Res.114(C1), C01016 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited