OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber

J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6509-6518 (2013)
http://dx.doi.org/10.1364/OE.21.006509


View Full Text Article

Enhanced HTML    Acrobat PDF (2260 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An experimental and theoretical study about selective photodeposition of metallic zinc nanoparticles onto an optical fiber end is presented. It is well known that metallic nanoparticles possess a high absorption coefficient and therefore trapping and manipulation is more challenging than dielectric particles. Here, we demonstrate a novel trapping mechanism that involves laser-induced convection flow (due to heat transfer from the zinc particles) that partially compensates both absorption and scattering forces in the vicinity of the fiber end. The gradient force is too small and plays no role on the deposition process. The interplay of these forces produces selective deposition of particles whose size is directly controlled by the laser power. In addition, a novel trapping mechanism termed convective-optical trapping is demonstrated.

© 2013 OSA

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(140.7010) Lasers and laser optics : Laser trapping
(350.5340) Other areas of optics : Photothermal effects
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 15, 2012
Manuscript Accepted: October 16, 2012
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
J. G. Ortega-Mendoza, F. Chávez, P. Zaca-Morán, C. Felipe, G. F. Pérez-Sánchez, G. Beltran-Pérez, O. Goiz, and R. Ramos-Garcia, "Selective photodeposition of zinc nanoparticles on the core of a single-mode optical fiber," Opt. Express 21, 6509-6518 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-5-6509


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta Mater.48(1), 1–29 (2000). [CrossRef]
  2. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B107(26), 6269–6275 (2003). [CrossRef]
  3. R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Meth. B91(1-4), 493–504 (1994). [CrossRef]
  4. H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Meth. B222(1-2), 114–122 (2004). [CrossRef]
  5. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology18(39), 1–6 (2007). [CrossRef]
  6. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008). [CrossRef]
  7. I. Tanahashi, H. Inouye, and A. Mito, “Femtosecond nonlinear optical properties of Au/SiO2 composite thin films prepared by a sputtering method,” Jpn. J. Appl. Phys.42(Part 1, No. 6A), 3467–3468 (2003). [CrossRef]
  8. N. Pincon-Roetzinger, D. Prot, B. Palpant, E. Charron, and S. Debrus, “Large optical Kerr effect in matrix-embedded metal nanoparticles,” Mater. Sci. Eng. C19(1-2), 51–54 (2002). [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics (Cambridge University Press 1999).
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  11. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994). [CrossRef] [PubMed]
  12. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics2(1), 1–32 (2008). [CrossRef]
  13. R. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt.41(12), 2318–2327 (2002). [CrossRef] [PubMed]
  14. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  15. J. W. Nicholson, R. S. Windeler, and D. J. Digiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express15(15), 9176–9183 (2007). [CrossRef] [PubMed]
  16. K. Kashiwagi, S. Yamashita, and S. Y. Set, “Optically manipulated deposition of carbon nanotubes onto optical fiber end,” Jpn. J. Appl. Phys.46(40), L988–L990 (2007). [CrossRef]
  17. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dualwavelength erbium-doped fiber laser,” Opt. Lett.35(21), 3709–3711 (2010). [CrossRef] [PubMed]
  18. L. Ming-Shan and Y. Chang-Xi, “Laser-Induced silver nanoparticles deposited on optical fiber core for surface-enhanced Raman scattering,” Chin. Phys. Lett.27(4), 044202 (2010). [CrossRef]
  19. T. Liu, X. Xiao, and C. Yang, “Surfactantless Photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir27(8), 4623–4626 (2011). [CrossRef] [PubMed]
  20. R. S. Taylor and C. Hnatovsky, “Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe,” Opt. Express12(5), 916–928 (2004). [CrossRef] [PubMed]
  21. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett.89(18), 188103 (2002). [CrossRef] [PubMed]
  22. E. Ehrenhaft, “On the physics of millionth of centimeters,” Phys. Z.18, 352–368 (1917).
  23. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express20(8), 8732–8740 (2012). [CrossRef] [PubMed]
  24. E. Vela, M. Hafez, and S. Régnier, “Laser-induced thermocapillary convection for mesoscale manipulation,” Int. J. of Optomechatronics3(4), 289–302 (2009). [CrossRef]
  25. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express16(7), 4991–4999 (2008). [CrossRef] [PubMed]
  26. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  27. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, 1972), Chap. 6.
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), Chap. 4.
  29. M. P. Silverman, Waves and Grains (Princeton U.P., 1998), Chap. 13.
  30. http://omlc.ogi.edu/software/mie/
  31. L. A. Spielman and S. K. Friedlander, “Role of the electrical double layer in particle deposition by convective diffusion,” J. Colloid Interface Sci.46(1), 22–31 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (4026 KB)     
» Media 2: MOV (2427 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited