OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6601-6608 (2013)
http://dx.doi.org/10.1364/OE.21.006601


View Full Text Article

Enhanced HTML    Acrobat PDF (1477 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present calculations of the optical force on heterodimer of two gold nanorods aligned head-to-tail, under plane wave illumination that is polarized along the dimer axis. It is found that near the dipole-quadrupole Fano resonance, the optical binding force between the nanorods reverses, indicating an attractive to repulsive transition. This is in contrast to homodimer which in similar configuration shows no negative binding force. Moreover, the force spectrum features asymmetric line shape and shifts accordingly when the Fano resonance is tuned by varying the nanorods length or their gap. We show that the force reversal is associated with the strong phase variation between the hybridized dipole and quadrupole modes near the Fano dip. The numerical results may be demonstrated by a near-field optical tweezer and shall be useful for studying “optical matters” in plasmonics.

© 2013 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 3, 2013
Manuscript Accepted: February 27, 2013
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, "Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer," Opt. Express 21, 6601-6608 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-5-6601


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009). [CrossRef]
  2. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009). [CrossRef] [PubMed]
  3. S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011). [CrossRef]
  4. H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011). [CrossRef] [PubMed]
  5. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010). [CrossRef] [PubMed]
  6. J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by evanescent wave,” Opt. Lett.35(7), 962–964 (2010). [CrossRef] [PubMed]
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010). [CrossRef] [PubMed]
  9. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010). [CrossRef]
  10. B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express19(22), 22167–22175 (2011). [CrossRef] [PubMed]
  11. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. advanced online paper, (2012).
  12. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett.37(23), 4919–4921 (2012). [CrossRef] [PubMed]
  13. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012). [CrossRef] [PubMed]
  14. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011). [CrossRef] [PubMed]
  15. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012). [CrossRef] [PubMed]
  16. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011). [CrossRef]
  17. J. M. Reed, H. Wang, W. Hu, and S. Zou, “Shape of Fano resonance line spectra calculated for silver nanorods,” Opt. Lett.36(22), 4386–4388 (2011). [CrossRef] [PubMed]
  18. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011). [CrossRef] [PubMed]
  19. F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
  20. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012). [CrossRef]
  21. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012). [CrossRef] [PubMed]
  22. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  23. V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010). [CrossRef]
  24. Commercial software CST Microwave Studio, http://www.cst.com .
  25. P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  26. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011). [CrossRef]
  27. J. J. Xiao and C. T. Chan, “Calculation of optical force on an infinite cylinder with arbitrary cross-section by the boundary element method,” J. Opt. Soc. Am. B25(9), 1553–1561 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited