OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

The properties of gold nanospheres studied with dark field optical trapping

Lin Ling, Lu Huang, Jinxin Fu, Honglian Guo, Jiafang Li, H. Daniel Ou-Yang, and Zhi-Yuan Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6618-6624 (2013)
http://dx.doi.org/10.1364/OE.21.006618


View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate trapping and characterization of multiple gold nanospheres with a setup composed of dark field imaging and optical tweezers. The number of trapped nanospheres is quantified by the overall dark-field scattering intensity. The spectra of the scattering intensity show that there is no interparticle coupling among trapped nanospheres when the density of nanospheres in the trap is low enough (less than 10 particles), while the density of nanosphere increases the interparticle coupling of nanospheres becomes obvious. In addition, the trapping potential of a single gold nanosphere is obtained by trapping an ensemble of gold nanospheres.

© 2013 OSA

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: January 7, 2013
Revised Manuscript: February 26, 2013
Manuscript Accepted: March 3, 2013
Published: March 8, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Lin Ling, Lu Huang, Jinxin Fu, Honglian Guo, Jiafang Li, H. Daniel Ou-Yang, and Zhi-Yuan Li, "The properties of gold nanospheres studied with dark field optical trapping," Opt. Express 21, 6618-6624 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-5-6618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971). [CrossRef]
  3. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt.36(10), 2107–2113 (1997). [CrossRef] [PubMed]
  4. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun.185(1-3), 77–82 (2000). [CrossRef]
  5. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002). [CrossRef]
  6. L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett.29(1), 014214 (2012). [CrossRef]
  7. J. P. Yin, Y. F. Zhu, W. B. Wang, Y. Z. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B15(1), 25–33 (1998). [CrossRef]
  8. A. T. O’Neil and M. J. Padgett, “Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers,” Opt. Commun.193(1-6), 45–50 (2001). [CrossRef]
  9. Q. W. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  10. L. Huang, H. L. Guo, J. F. Li, L. Ling, B. H. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett.37(10), 1694–1696 (2012). [CrossRef] [PubMed]
  11. T. Ketelaar, H. S. van der Honing, and A. M. Emons, “Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers,” Biochem. Soc. Trans.38(3), 823–828 (2010). [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett.19(13), 930–932 (1994). [CrossRef] [PubMed]
  13. T. Rodgers, S. Shoji, Z. Sekkat, and S. Kawata, “Selective aggregation of single-walled carbon nanotubes using the large optical field gradient of a focused laser beam,” Phys. Rev. Lett.101(12), 127402 (2008). [CrossRef] [PubMed]
  14. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006). [CrossRef] [PubMed]
  15. J. F. Li, S. Y. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic filminduced by aligned gold nanorods,” Appl. Phys. Lett.96(26), 263103 (2010). [CrossRef]
  16. F. Zhou, Z. Y. Li, Y. Liu, and Y. N. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C112(51), 20233–20240 (2008). [CrossRef]
  17. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett.5(10), 1937–1942 (2005). [CrossRef] [PubMed]
  18. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004). [CrossRef]
  19. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010). [CrossRef] [PubMed]
  20. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express12(13), 3011–3017 (2004). [CrossRef] [PubMed]
  21. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys.6(12), 1005–1009 (2010). [CrossRef]
  22. M. J. Guffey and N. F. Scherer, “All-optical patterning of au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010). [CrossRef] [PubMed]
  23. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  24. P. Wu, R. Huang, C. Tischer, A. Jonas, and E. L. Florin, “Direct measurement of the nonconservative force field generated by optical tweezers,” Phys. Rev. Lett.103(10), 108101 (2009). [CrossRef] [PubMed]
  25. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J.70(4), 1813–1822 (1996). [CrossRef] [PubMed]
  26. L. A. Hough and H. D. Ou-Yang, “A new probe for mechanical testing of nanostructures in soft materials,” J. Nanopart. Res.1(4), 495–499 (1999). [CrossRef]
  27. M. J. Lang, P. M. Fordyce, and S. M. Block, “Combined optical trapping and single-molecule fluorescence,” J. Biol.2(1), 6 (2003). [CrossRef] [PubMed]
  28. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum.75(3), 594 (2004). [CrossRef]
  29. E. L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys A.66(7), S75–S78 (1998). [CrossRef]
  30. J. Junio, J. Ng, J. A. Cohen, Z. F. Lin, and H. D. Ou-Yang, “Ensemble method to measure the potential energy of nanoparticles in an optical trap,” Opt. Lett.36(8), 1497–1499 (2011). [CrossRef] [PubMed]
  31. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003). [CrossRef]
  32. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature382(6592), 607–609 (1996). [CrossRef] [PubMed]
  33. L. Ling, F. Zhou, L. Huang, and Z. Y. Li, “Optical forces on arbitrary shaped particles in optical tweezers,” J. Appl. Phys.108(7), 073110 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited