OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Imaging by integrating stitched spectrograms

Carson Teale, Dan Adams, Margaret Murnane, Henry Kapteyn, and Daniel J. Kane  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 6783-6793 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1231 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new diffractive imaging technique called Imaging By Integrating Stitched Spectrograms (IBISS) is presented. Both the data collection and phase retrieval algorithm used in IBISS are direct extensions of frequency resolved optical gating to higher dimensions. Data collection involves capturing an array of diffraction patterns generated by scanning a sample across a coherent beam of light. Phase retrieval is performed using the Principal Components Generalized Projections Algorithm (PCGPA) by reducing the four dimensional data set of images to two remapped two-dimensional sets. The technique is successfully demonstrated using a Helium Neon laser to image a 350μm wide sample with 12μm resolution.

© 2013 OSA

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.0180) Imaging systems : Microscopy
(180.5810) Microscopy : Scanning microscopy
(110.1455) Imaging systems : Blind deconvolution

ToC Category:
Imaging Systems

Original Manuscript: December 11, 2012
Revised Manuscript: February 13, 2013
Manuscript Accepted: February 14, 2013
Published: March 11, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Carson Teale, Dan Adams, Margaret Murnane, Henry Kapteyn, and Daniel J. Kane, "Imaging by integrating stitched spectrograms," Opt. Express 21, 6783-6793 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Sayre, “Some implications of a theorem due to Shannon,” Acta Crystallogr. A, 843 (1952).
  2. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400(6742), 342–344 (1999). [CrossRef]
  3. K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, and T. Salditt, “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(2), 529–534 (2010). [CrossRef] [PubMed]
  4. P. Thibault, V. Elser, C. Jacobsen, D. Shapiro, and D. Sayre, “Reconstruction of a yeast cell from X-ray diffraction data,” Acta Crystallogr. A62(4), 248–261 (2006). [CrossRef] [PubMed]
  5. C. A. Larabell and K. A. Nugent, “Imaging cellular architecture with X-rays,” Curr. Opin. Struct. Biol.20(5), 623–631 (2010). [CrossRef] [PubMed]
  6. F. Berenguer de la Cuesta, M. P. E. Wenger, R. J. Bean, L. Bozec, M. A. Horton, and I. K. Robinson, “Coherent X-ray diffraction from collagenous soft tissues,” Proc. Natl. Acad. Sci. U.S.A.106(36), 15297–15301 (2009). [CrossRef] [PubMed]
  7. J. Nelson, X. Huang, J. Steinbrener, D. Shapiro, J. Kirz, S. Marchesini, A. M. A. M. Neiman, J. J. J. J. Turner, and C. Jacobsen, “High-resolution x-ray diffraction microscopy of specifically labeled yeast cells,” Proc. Natl. Acad. Sci. U.S.A.107(16), 7235–7239 (2010). [CrossRef] [PubMed]
  8. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17(1), 266–277 (2009). [CrossRef] [PubMed]
  9. R. L. Sandberg, D. A. Raymondson, C. La-O-Vorakiat, A. Paul, K. S. Raines, J. Miao, M. M. Murnane, H. C. Kapteyn, and W. F. Schlotter, “Tabletop soft-x-ray Fourier transform holography with 50 nm resolution,” Opt. Lett.34(11), 1618–1620 (2009). [CrossRef] [PubMed]
  10. H. Jiang, C. Song, C. C. Chen, R. Xu, K. S. Raines, B. P. Fahimian, C. H. Lu, T. K. Lee, A. Nakashima, J. Urano, T. Ishikawa, F. Tamanoi, and J. Miao, “Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy,” Proc. Natl. Acad. Sci. U.S.A.107(25), 11234–11239 (2010). [CrossRef] [PubMed]
  11. Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction,” Phys. Rev. Lett.102(1), 018101 (2009). [CrossRef] [PubMed]
  12. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys.4(5), 394–398 (2008). [CrossRef]
  13. H. M. Quiney, G. Peele, Z. Cai, D. Paterson, and K. A. Nugent, “Diffractive imaging of highly focused X-ray fields,” Nat. Phys.2(2), 101–104 (2006). [CrossRef]
  14. G. Williams, H. Quiney, B. Dhal, C. Tran, K. Nugent, A. Peele, D. Paterson, and M. de Jonge, “Fresnel Coherent Diffractive Imaging,” Phys. Rev. Lett.97(2), 025506 (2006). [CrossRef]
  15. D. J. Vine, G. J. Williams, B. Abbey, M. Pfeifer, J. N. Clark, M. D. de Jonge, I. McNulty, G. Peele, and K. Nugent, “Ptychographic Fresnel coherent diffractive imaging,” Phys. Rev. A80(6), 063823 (2009). [CrossRef]
  16. G. Williams, H. Quiney, B. Dahl, C. Tran, A. G. Peele, K. A. Nugent, M. D. De Jonge, and D. Paterson, “Curved beam coherent diffractive imaging,” Thin Solid Films515(14), 5553–5556 (2007). [CrossRef]
  17. T. Harada, M. Nakasuji, T. Kimura, T. Watanabe, H. Kinoshita, and Y. Nagata, “Imaging of extreme-ultraviolet mask patterns using coherent extreme-ultraviolet scatterometry microscope based on coherent diffraction imaging,” J. Vac. Sci. Technol. B29(6), 06F503 (2011). [CrossRef]
  18. T. Harada, J. Kishimoto, T. Watanabe, H. Kinoshita, and D. G. Lee, “Mask observation results using a coherent extreme ultraviolet scattering microscope at NewSUBARU,” J. Vac. Sci. Technol. B27(6), 3203 (2009). [CrossRef]
  19. D. F. Gardner, B. Zhang, M. D. Seaberg, L. S. Martin, D. E. Adams, F. Salmassi, E. Gullikson, H. Kapteyn, and M. Murnane, “High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination,” Opt. Express20(17), 19050–19059 (2012). [CrossRef] [PubMed]
  20. M. Dierolf, O. Bunk, S. Kynde, P. Thibault, I. Johnson, A. Menzel, K. Jefimovs, C. David, O. Marti, and F. Pfeiffer, “Ptychography & lensless x ray imaging,” Europhys. News39(1), 22–24 (2008). [CrossRef]
  21. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive imaging,” Ultramicroscopy109(4), 338–343 (2009). [CrossRef] [PubMed]
  22. D. Kane, “Principal components generalized projections : a review [ Invited ],” J. Opt. Soc. Am. B25(6), A120–A130 (2008). [CrossRef]
  23. R. Trebino and D. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am.10(5), 1101 (1993). [CrossRef]
  24. H. Stark, Image Recovery : Theory and Application (Academic Press, 1986).
  25. R. Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2000).
  26. K. DeLong, R. Trebino, J. Hunter, and W. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B11(11), 2206–2215 (1994). [CrossRef]
  27. D. Kane, “Principal components generalized projections: a review,” J. Opt. Soc. Am. B25(6), A120–A132 (2008). [CrossRef]
  28. K. W. DeLong, R. Trebino, and W. E. White, “Simultaneous recovery of two ultrashort laser pulses from a single spectrogram,” J. Opt. Soc. Am. B12(12), 2463 (1995). [CrossRef]
  29. D. J. Kane, G. Rodriguez, A. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B14(4), 935–943 (1997). [CrossRef]
  30. B. C. McCallum and J. M. Rodenburg, “Simultaneous reconstruction of object and aperture functions from multiple far-field intensity measurements,” J. Opt. Soc. Am.10(2), 231 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited