OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Tomographic imaging via spectral encoding of spatial frequency

Shikhar Uttam, Sergey A. Alexandrov, Rajan K. Bista, and Yang Liu  »View Author Affiliations

Optics Express, Vol. 21, Issue 6, pp. 7488-7504 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1323 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional optical tomographic imaging plays an important role in biomedical research and clinical applications. We introduce spectral tomographic imaging (STI) via spectral encoding of spatial frequency principle that not only has the capability for visualizing the three-dimensional object at sub-micron resolution but also providing spatially-resolved quantitative characterization of its structure with nanoscale accuracy for any volume of interest within the object. The theoretical basis and the proof-of-concept numerical simulations are presented to demonstrate the feasibility of spectral tomographic imaging.

© 2013 OSA

OCIS Codes
(170.6960) Medical optics and biotechnology : Tomography
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.1758) Imaging systems : Computational imaging
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

Original Manuscript: November 5, 2012
Revised Manuscript: January 28, 2013
Manuscript Accepted: February 4, 2013
Published: March 19, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Shikhar Uttam, Sergey A. Alexandrov, Rajan K. Bista, and Yang Liu, "Tomographic imaging via spectral encoding of spatial frequency," Opt. Express 21, 7488-7504 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Comm.1, 153–156 (1969). [CrossRef]
  2. E. Wolf, “Determination of the amplitude and the phase of scattered fields of holography,” J. Opt. Soc. Am.60, 18–20 (1970). [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  4. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17, 266–277 (2009). [CrossRef] [PubMed]
  5. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt.57, 686–699 (2010). [CrossRef]
  6. A. F. Fercher, “Ophthalmic interferometry,” in Optics in medicine, biology and environment, G. von Bally and S Khanna, eds. (Elsevier, Amsterdam, 1999), 221–235.
  7. C. K. Hitzenberger, “Optical measurement of the axial eye length by laser Doppler interferometry,” Invest. Ophthalmol. Vis. Sci.32, 616–624 (1991). [PubMed]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotire, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991). [CrossRef] [PubMed]
  9. B. E. Bouma and G. J. Tearney, The handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  10. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett.19, 590–592 (1994). [CrossRef] [PubMed]
  11. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-back-scattered digital holographic microscopy,” Appl. Opt.45, 8209–8217 (2006). [CrossRef] [PubMed]
  12. M. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express7, 305–310 (2000). [CrossRef] [PubMed]
  13. L. Yu and M. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett.30, 2092–2094 (2005). [CrossRef] [PubMed]
  14. J. Kühn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett.34, 653–655 (2009). [CrossRef] [PubMed]
  15. R. Dändliker and K. Weiss, “Reconstruction of the three-dimensional refractive index from scattered waves,” Opt. Comm.1, 323–328 (1970). [CrossRef]
  16. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc.205, 165–176 (2002). [CrossRef] [PubMed]
  17. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett.34, 79–81 (2009). [CrossRef]
  18. B. Simon, M. Debailleul, A. Beghin, Y. Tourneur, and O. Haeberlé, “High-resolution tomographic diffractive microscopy of biological samples,” J. Biophoton.3, 462–467 (2010). [CrossRef]
  19. J. Girard, G. Maire, H. Giovannini, A. Talneau, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Nanometric resolution using far-field optical tomographic microscopy in the multiple scattering regime,” Phys. Rev. A82, 061801(R) (2010). [CrossRef]
  20. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry” Opt. Comm.117, 43–48 (1995). [CrossRef]
  21. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3, 129–134 (2007). [CrossRef]
  22. T. Ralston, D. Marks, P. Carney, and S. Boppart, “Inverse scattering for optical coherence tomography,” J. Opt. Soc. Am. A23, 1027–1037 (2006). [CrossRef]
  23. D. Marks, T. Ralston, S. Boppart, and P. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A24, 1034–1041 (2007). [CrossRef]
  24. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Mller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature406, 35–36 (2000). [CrossRef] [PubMed]
  25. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett.30, 2445–2447 (2005). [CrossRef] [PubMed]
  26. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine struct ure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett.80, 627–630 (1998). [CrossRef]
  27. K. J. Chalut, J. H. Ostrander, M. G. Giacomelli, and A. Wax, “Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis,” Cancer Res.69, 1199–1204 (2009). [CrossRef] [PubMed]
  28. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28, 1230–1232 (2003). [CrossRef] [PubMed]
  29. T. Gutzler, T. R. Hillman, S. A. Alexandrov, and D. D. Sampson, “Three-dimensional depth-resolved and extended-resolution micro-particle characterization by holographic light scattering spectroscopy,” Opt. Express18, 25116–25126 (2010). [CrossRef] [PubMed]
  30. H. Fang, L. Qiu, E. Vitkin, M. Zaman, C. Andersson, S. Salahuddin, L. Kimerer, P. Cipolloni, M. Modell, B. Turner, S. Keates, I. Bigio, I. Itzkan, S. Freedman, R. Bansil, E. Hanlon, and L. Perelman, “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt.46, 1760–1769 (2007). [CrossRef] [PubMed]
  31. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K. H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci.10417255–17260 (2007). [CrossRef] [PubMed]
  32. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett.26, 1063–1065 (2001). [CrossRef]
  33. R. M. Pasternack, Z. Qian, J. Y. Zheng, D. N. Metaxas, and N. N. Boustany, “Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters,” Opt. Express17, 12001–12012 (2009). [CrossRef] [PubMed]
  34. S. A. Alexandrov, S. Uttam, R. K. Bista, and Y. Liu, “Spectral encoding of spatial frequency approach for characterization of nanoscale structures,” Appl. Phys. Lett.101033702 (2012). [CrossRef]
  35. S. A. Alexandrov, S. Uttam, R. K. Bista, C. Zhao, and Y. Liu, “Real-time quantitative visualization of 3D structural information,” Opt. Express20, 9203–9214 (2012). [CrossRef] [PubMed]
  36. J. Goodman, Introduction to Fourier Optics (Roberts & Company, Colorado, 1999).
  37. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited