OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

Adaptive broadband continuum source at 1200–1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber

L. A. Vazquez-Zuniga, Hong Sig Kim, Youngchul Kwon, and Yoonchan Jeong  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7712-7725 (2013)
http://dx.doi.org/10.1364/OE.21.007712


View Full Text Article

Enhanced HTML    Acrobat PDF (2531 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally analyze the stimulated Raman scattering characteristics of a high-birefringence fiber (HBF), which presents an extraordinary level of spectral broadening incurred by the strong nonlinear interaction between the pump and Stokes pulses via the polarization-mode dispersion and group-velocity dispersion of the fiber. We also investigate the impact of the inter-pulse time-delay on the additional spectra broadening when dual-wavelength pump pulses are used. Exploiting these unique SRS properties of the HBF, we develop a novel Raman continuum source based on an all-fiber dual-wavelength master-oscillator power amplifier that can generate a dip-free spectrum in the 1200−1400-nm spectral range. We finally obtain a broadband continuum having an average power of ~840 mW and a 3-dB bandwidth of ~240 nm centered at 1200−1400 nm, which also represents a good spectral flatness and conversion efficiency. This type of source is very useful and important for optical coherence tomography applications, for example.

© 2013 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5910) Scattering : Scattering, stimulated Raman
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 15, 2013
Revised Manuscript: March 12, 2013
Manuscript Accepted: March 13, 2013
Published: March 21, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
L. A. Vazquez-Zuniga, Hong Sig Kim, Youngchul Kwon, and Yoonchan Jeong, "Adaptive broadband continuum source at 1200–1400 nm based on an all-fiber dual-wavelength master-oscillator power amplifier and a high-birefringence fiber," Opt. Express 21, 7712-7725 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-6-7712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011). [CrossRef] [PubMed]
  3. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt.49(25), F71–F78 (2010). [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19(4), 753–764 (2002). [CrossRef]
  7. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, “Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source,” Opt. Express10(8), 382–387 (2002), doi:. [CrossRef] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  9. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express16(19), 14435–14447 (2008), doi:. [CrossRef] [PubMed]
  10. K. K. Chen, S.-U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010), doi:. [CrossRef] [PubMed]
  11. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: Microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007), doi: . [CrossRef]
  12. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:. [CrossRef] [PubMed]
  13. D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004). [CrossRef]
  14. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007). [CrossRef]
  15. P. F. Moulton, “Power scaling of high-efficiency Tm-doped fiber lasers,” in Proc. LASE 2008, paper 6873–15 (2008).
  16. E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005). [CrossRef]
  17. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003). [CrossRef]
  18. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express12(22), 5287–5295 (2004). [CrossRef] [PubMed]
  19. K. K. Chen, S.-U. Alam, P. Horak, C. A. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm,” Opt. Lett.35(14), 2433–2435 (2010). [CrossRef] [PubMed]
  20. C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010). [CrossRef] [PubMed]
  21. H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999). [CrossRef]
  22. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001). [CrossRef]
  23. L. F. Mollenauer, A. R. Grant, and P. V. Mamyshev, “Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain,” Opt. Lett.27(8), 592–594 (2002). [CrossRef] [PubMed]
  24. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett.20(1), 31–33 (1995). [CrossRef] [PubMed]
  25. R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986). [CrossRef]
  26. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011). [CrossRef]
  27. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:. [CrossRef] [PubMed]
  28. G. Millot and J. M. Dudley, “Polarization-mode dispersion measurements in high-birefringence fibers by means of stimulated Raman scattering,” Appl. Opt.41(13), 2589–2591 (2002). [CrossRef] [PubMed]
  29. M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004). [CrossRef]
  30. Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers,” IEEE J. Quantum Electron.41(6), 779–788 (2005). [CrossRef]
  31. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998). [CrossRef] [PubMed]
  32. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17(8), 6134–6147 (2009), doi:. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited