OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 4 — May. 22, 2013

High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass

Wenjiang Tan, Zhiguang Zhou, Aoxiang Lin, Jinhai Si, Pingping Zhan, Bin Wu, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7740-7747 (2013)
http://dx.doi.org/10.1364/OE.21.007740


View Full Text Article

Enhanced HTML    Acrobat PDF (1958 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the ballistic imaging technique using femtosecond optical Kerr gate of a tellurite glass. High contrast images of an object hidden behind turbid media were obtained. Compared to the conventional femtosecond optical Kerr gate using fused quartz, the optical Kerr gate using tellurite glass has more capacity to acquire high quality images of the object hidden behind a high optical density turbid medium. The experimental results indicated that the tellurite glass is a good candidate as the optical Kerr material for the ballistic imaging technique due to its large optical nonlinearity.

© 2013 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Imaging Systems

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 13, 2013
Published: March 21, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Wenjiang Tan, Zhiguang Zhou, Aoxiang Lin, Jinhai Si, Pingping Zhan, Bin Wu, and Xun Hou, "High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass," Opt. Express 21, 7740-7747 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-6-7740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004). [CrossRef] [PubMed]
  2. M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005). [CrossRef]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991). [CrossRef] [PubMed]
  4. J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011). [CrossRef]
  5. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt.36(28), 7270–7276 (1997). [CrossRef] [PubMed]
  6. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006). [CrossRef] [PubMed]
  7. M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006). [CrossRef]
  8. M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt.44(31), 6627–6634 (2005). [CrossRef] [PubMed]
  9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt.48(4), B137–B144 (2009). [CrossRef] [PubMed]
  10. M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010). [CrossRef]
  11. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003). [CrossRef]
  12. S. Idlahcen, L. Méès, C. Rozé, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A26(9), 1995–2004 (2009). [CrossRef] [PubMed]
  13. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast, cross-correlated harmonic imaging through scattering media,” Appl. Opt.40(1), 45–51 (2001). [CrossRef] [PubMed]
  14. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett.35(16), 2732–2734 (2010). [CrossRef] [PubMed]
  15. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011). [CrossRef] [PubMed]
  16. J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).
  17. D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010). [CrossRef]
  18. F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express20(9), 9604–9615 (2012). [CrossRef] [PubMed]
  19. J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012). [CrossRef]
  20. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett.21(22), 1812–1814 (1996). [CrossRef] [PubMed]
  21. R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006). [CrossRef]
  22. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17(19), 16716–16721 (2009). [CrossRef] [PubMed]
  23. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009). [CrossRef] [PubMed]
  24. W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013). [CrossRef]
  25. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited