OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Controlling light scattering and polarization by spherical particles with radial anisotropy

Y. X. Ni, L. Gao, A. E. Miroshnichenko, and C. W. Qiu  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8091-8100 (2013)
http://dx.doi.org/10.1364/OE.21.008091


View Full Text Article

Enhanced HTML    Acrobat PDF (1523 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on full-wave electromagnetic theory, we derive the zero-forward and zero-backward scattering conditions for radially anisotropic spheres within the quasi-static limit. We find that the near-field intensity can be tuned dramatically through the adjustment of the radial anisotropy, while the far-field light scattering diagrams are similar under the zero-forward or zero-backward scattering conditions. Generalized “Brewster’s angle” for anisotropic spheres is also derived, at which the scattering light is totally polarized. In addition, the high-quality polarized scattering wave and the tunable polarization conversion can be achieved for the radially anisotropic spheres.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.5430) Physical optics : Polarization
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: February 7, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 18, 2013
Published: March 27, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Y. X. Ni, L. Gao, A. E. Miroshnichenko, and C. W. Qiu, "Controlling light scattering and polarization by spherical particles with radial anisotropy," Opt. Express 21, 8091-8100 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-7-8091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Rayleigh, “On the light from the sky, its polarization and color appendix,” Philos. Mag.41, 107–120 (1871).
  2. G. Mie, “Contributions to the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys.25, 377–445 (1908). [CrossRef]
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  4. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th (expanded) ed. (Cambridge, 1999).
  5. P. Bhatia and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications,” Sens. Actuators B161, 434–438 (2012). [CrossRef]
  6. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Hook, D. S. Sctherland, and M. Kall, “Plasmonics sensing characteristis of single nanometric holes,” Nano Lett.5, 2335–2339 (2005). [CrossRef] [PubMed]
  7. S. Albaladejo, M. I. Marques, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of spin angular momentum of a light field,” Phys. Rev. Lett.102, 113602 (2009). [CrossRef] [PubMed]
  8. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010). [CrossRef] [PubMed]
  9. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express15, 2622–2653 (2007). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  11. Z. Liu, S. Durant, H. Lee, Y. Picus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett.7, 403–408 (2007). [CrossRef] [PubMed]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312, 1780–1782 (2006). [CrossRef] [PubMed]
  13. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett.97, 263902 (2006). [CrossRef]
  14. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonance,” Phys. Rev. Lett.100, 043903 (2008). [CrossRef] [PubMed]
  15. Z. Liu, Z. Lin, and S. T. Chui, “Electromagnetic scattering by spherically negative-refractive-index particles: low frequency resonance and localization parameters,” Phys. Rev. E69, 016609 (2004). [CrossRef]
  16. A. E. Miroshnichenko, “Non-Rayleigh limit of the Lorenz-Mie solution and supression of scattering by spheres of negative refractive index,” Phys. Rev. A80, 013808 (2009). [CrossRef]
  17. M. Kerker, D. S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]
  18. B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A25, 2875–2878 (2008). [CrossRef]
  19. B. Garcia-Camara, J. M. Saiz, F. Gonzalez, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun.283, 490–496 (2010). [CrossRef]
  20. B. García-Cámara, R. Alcaraz de la Osa, J. M. Saiz, F. González, and F. Moreno, “Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited,” Opt. Lett.36, 728–730 (2011). [CrossRef] [PubMed]
  21. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A25, 327–334 (2008). [CrossRef]
  22. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012). [CrossRef]
  23. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  24. S. Person, M. Jain, Z. Lapin, J. J. Saenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” http://arxiv.org/abs/1212.2793v1 .
  25. J. Roth and M. J. Digman, “Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer,” J. Opt. Soc. Am.63, 308–311 (1973). [CrossRef]
  26. V. L. Sukhorukov, G. Meedt, M. Kurschner, and U. Zimmermann, “A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane,” J. Electrost.50, 191–204 (2001). [CrossRef]
  27. T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, “Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles,” Phys. Rew. B73, 085412 (2006). [CrossRef]
  28. L. Gao, T. H. Fung, K. W. Yu, and C. W. Qiu, “Electromagnetic transparency by coated spheres with radial anisotropy,” Phys. Rew. E78, 046609 (2008). [CrossRef]
  29. L. Gao and X. P. Xu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B55, 403–409 (2007). [CrossRef]
  30. X. Fan, Z. Shen, and B. S. Luk’yanchuk, “Huge light scattering from anisotropic spherical particles,” Opt. Express18, 24868–24880 (2010). [CrossRef] [PubMed]
  31. C. W. Qiu and B. S. Luk’yanchuk, “Peculiarities in light scattering by spherical particles with radial anisotropy,” J. Opt. Soc. Am. A25, 1623–1628 (2008). [CrossRef]
  32. Y. X. Ni, L. Gao, A. E. Miroshnichenko, and C. W. Qiu, “Non-Rayleigh scattering behavior for anisotropic Rayleigh particles,” Opt. Lett.37, 3390–3392 (2012). [CrossRef]
  33. H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A86, 033825 (2012). [CrossRef]
  34. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007). [CrossRef] [PubMed]
  35. B. S. Luk’yanchuk and C. W. Qiu, “Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials,” Appl. Phys. A92, 773–776 (2008). [CrossRef]
  36. A. Alù and N. Engheta, “How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem,” J. Nanophoton.4, 041590 (2010). [CrossRef]
  37. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108, 263905 (2012). [CrossRef] [PubMed]
  38. M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-supressed scattering and optical forces on submicrometer dieletric particles,” J. Opt. Soc. Am. A28, 54–60 (2011). [CrossRef]
  39. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5, 053512 (2011). [CrossRef]
  40. C. E. Dean and P. L. Marston, “Critical angle light scattering from bubbles: an asymptotic series approximation,” Appl. Opt.30, 4764–4776 (1991). [CrossRef] [PubMed]
  41. B. García-Cámara, F. González, and F. Moreno, “Linear polarization degree for detecting magnetic properties of small particles,” Opt. Lett.35, 4084–4086 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited