OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck  »View Author Affiliations

Optics Express, Vol. 21, Issue 7, pp. 8166-8176 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (8399 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient conversion of photonic to plasmonic energy is important for nano-optical applications, particularly imaging and spectroscopy. Recently a new generation of photonic/plasmonic transducers, the ‘campanile’ probes, has been developed that overcomes many shortcomings of previous near-field probes by efficiently merging broadband field enhancement with bidirectional coupling of far- to near-field electromagnetic modes. In this work we compare the properties of the campanile structure with those of current NSOM tips using finite element simulations. Field confinement, enhancement, and polarization near the apex of the probe are evaluated relative to local fields created by conical tapered tips in vacuum and in tip-substrate gap mode. We show that the campanile design has similar field enhancement and bandwidth capabilities as those of ultra-sharp metallized tips, but without the substrate and sample restrictions inherent in the tip-surface gap mode operation often required by those tips. In addition, we show for the first time that this campanile probe structure also significantly enhances the radiative rate of any dipole emitter located near the probe apex, quantifying the enhanced decay rate and demonstrating that over 90% of the light radiated by the emitter is “captured” by this probe. This is equivalent to collecting the light from a solid angle of ~3.6 pi. These advantages are crucial for performing techniques such as Raman and IR spectroscopy, white-light nano-ellipsometry and ultrafast pump-probe studies at the nanoscale.

© 2013 OSA

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 8, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 19, 2013
Published: March 28, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck, "Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips," Opt. Express 21, 8166-8176 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev.66(7-8), 163–182 (1944). [CrossRef]
  2. E. A. Ash and G. Nicholls, “Super-Resolution Aperture Scanning Microscope,” Nature237(5357), 510–512 (1972). [CrossRef] [PubMed]
  3. M. A. Paesler and P. J. Moyer, Near-Field Optics: Theory, Instrumentation and Applications (Wiley, 1996).
  4. D. W. Pohl, W. Denk, and M. Lanz, “Optical Stethoscopy - Image Recording with Resolution Lambda/20,” Appl. Phys. Lett.44(7), 651–653 (1984). [CrossRef]
  5. E. Betzig and J. K. Trautman, “Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit,” Science257(5067), 189–195 (1992). [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-Field Nano-Imaging and Superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  8. A. V. Zayats and D. Richards, Nano-Optics and near-Field Optical Microscopy (Artech House, 2008).
  9. W. Bao, M. Melli, N. Caselli, F. Riboli, D. S. Wiersma, M. Staffaroni, H. Choo, D. F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M. B. Salmeron, E. Yablonovitch, P. J. Schuck, and A. Weber-Bargioni, “Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging,” Science338(6112), 1317–1321 (2012). [CrossRef] [PubMed]
  10. H. Choo, M.-K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a Metal-Insulator-Metal Gap Plasmon Waveguide with a Three-Dimensional Linear Taper,” Nat. Photonics6(12), 838–844 (2012). [CrossRef]
  11. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit Analysis in Metal-Optics,” Photonics Nanostruct. Fundam. Appl.10(1), 166–176 (2012). [CrossRef]
  12. J. Wessel, “Surface-Enhanced Optical Microscopy,” J. Opt. Soc. Am. B2(9), 1538–1541 (1985). [CrossRef]
  13. Y. Inouye and S. Kawata, “Near-Field Scanning Optical Microscope with a Metallic Probe Tip,” Opt. Lett.19(3), 159–161 (1994). [CrossRef] [PubMed]
  14. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science269(5227), 1083–1085 (1995). [CrossRef] [PubMed]
  15. L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem.57(1), 303–331 (2006). [CrossRef] [PubMed]
  16. N. Anderson, A. Bouhelier, and L. Novotny, “Near-Field Photonics: Tip-Enhanced Microscopy and Spectroscopy on the Nanoscale,” J. Opt. A, Pure Appl. Opt.8(4), S227–S233 (2006). [CrossRef]
  17. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett.85(14), 3029–3032 (2000). [CrossRef] [PubMed]
  18. J. Stadler, T. Schmid, and R. Zenobi, “Developments in and Practical Guidelines for Tip-Enhanced Raman Spectroscopy,” Nanoscale4(6), 1856–1870 (2012). [CrossRef] [PubMed]
  19. D. Roy, J. Wang, and C. Williams, “Novel Methodology for Estimating the Enhancement Factor for Tip-Enhanced Raman Spectroscopy,” J. Appl. Phys.105(1), 013530 (2009). [CrossRef]
  20. K. F. Domke and B. Pettinger, “Studying Surface Chemistry Beyond the Diffraction Limit: 10 Years of Ters,” ChemPhysChem11(7), 1365–1373 (2010). [CrossRef] [PubMed]
  21. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector Field Microscopic Imaging of Light,” Nat. Photonics1(1), 53–56 (2007). [CrossRef]
  22. D. S. Kim, J. Heo, S. H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-Space Mapping of the Strongly Coupled Plasmons of Nanoparticle Dimers,” Nano Lett.9(10), 3619–3625 (2009). [CrossRef] [PubMed]
  23. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of Electric-Field, Magnetic-Field, and Electric-Current Distributions of Infrared Optical Antennas: A near-Field Optical Vector Network Analyzer,” Phys. Rev. Lett.105(16), 167403 (2010). [CrossRef] [PubMed]
  24. A. Hartschuh, “Tip-Enhanced near-Field Optical Microscopy,” Angew. Chem. Int. Ed. Engl.47(43), 8178–8191 (2008). [CrossRef] [PubMed]
  25. J. Stadler, T. Schmid, and R. Zenobi, “Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy,” Nano Lett.10(11), 4514–4520 (2010). [CrossRef] [PubMed]
  26. S. M. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  27. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “Nanopen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles,” Nano Lett.9(8), 2921–2925 (2009). [CrossRef] [PubMed]
  28. A. T. Zayak, Y. S. Hu, H. Choo, J. Bokor, S. Cabrini, P. J. Schuck, and J. B. Neaton, “Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces,” Phys. Rev. Lett.106(8), 083003 (2011). [CrossRef] [PubMed]
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2007), pp. 499–519.
  30. Y. Saito, T. Murakami, Y. Inouye, and S. Kawata, “Fabrication of Silver Probes for Localized Plasmon Excitation in near-Field Raman Spectroscopy,” Chem. Lett.34(7), 920–921 (2005). [CrossRef]
  31. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy,” Phys. Rev. Lett.92(9), 096101 (2004). [CrossRef] [PubMed]
  32. C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, “Scanning-Probe Raman Spectroscopy with Single-Molecule Sensitivity,” Phys. Rev. B73(19), 193406 (2006). [CrossRef]
  33. M. Sackrow, C. Stanciu, M. A. Lieb, and A. J. Meixner, “Imaging Nanometre-Sized Hot Spots on Smooth Au Films with High-Resolution Tip-Enhanced Luminescence and Raman near-Field Optical Microscopy,” ChemPhysChem9(2), 316–320 (2008). [CrossRef] [PubMed]
  34. T. Deckert-Gaudig and V. Deckert, “Ultraflat Transparent Gold Nanoplates - Ideal Substrates for Tip-Enhanced Raman Scattering Experiments,” Small5(4), 432–436 (2009). [CrossRef] [PubMed]
  35. K. F. Domke and B. Pettinger, “In Situ Discrimination between Axially Complexed and Ligand-Free Co Porphyrin on Au(111) with Tip-Enhanced Raman Spectroscopy,” ChemPhysChem10(11), 1794–1798 (2009). [CrossRef] [PubMed]
  36. R. Esteban, R. Vogelgesang, and K. Kern, “Tip-Substrate Interaction in Optical near-Field Microscopy,” Phys. Rev. B75(19), 195410 (2007). [CrossRef]
  37. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for Visible and Infrared Radiation,” Rep. Prog. Phys.75(2), 024402 (2012). [CrossRef] [PubMed]
  38. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  39. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  40. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single Quantum Dot Coupled to a Scanning Optical Antenna: A Tunable Superemitter,” Phys. Rev. Lett.95(1), 017402 (2005). [CrossRef] [PubMed]
  41. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. J. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes,” Nano Lett.11(3), 1201–1207 (2011). [CrossRef] [PubMed]
  42. L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary Optical Transmission Brightens near-Field Fiber Probe,” Nano Lett.11(2), 355–360 (2011). [CrossRef] [PubMed]
  43. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic Nearfield Scanning Probe with High Transmission,” Nano Lett.8(9), 3041–3045 (2008). [CrossRef] [PubMed]
  44. L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography Using High Transmission Nanoscale Bowtie Apertures,” Nano Lett.6(3), 361–364 (2006). [CrossRef] [PubMed]
  45. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral Analysis of Strongly Enhanced Visible Light Transmission through Single C-Shaped Nanoapertures,” Appl. Phys. Lett.85(4), 648–650 (2004). [CrossRef]
  46. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-Coupling of Surface Plasmons onto Metallic Tips: A Nanoconfined Light Source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  47. C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, “Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip,” Nano Lett.10(2), 592–596 (2010). [CrossRef] [PubMed]
  48. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett.11(4), 1609–1613 (2011). [CrossRef] [PubMed]
  49. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale Chemical Mapping Using Three-Dimensional Adiabatic Compression of Surface Plasmon Polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010). [CrossRef] [PubMed]
  50. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale,” J. Phys. Chem. Lett.3(7), 945–952 (2012). [CrossRef]
  51. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire Plasmon Excitation by Adiabatic Mode Transformation,” Phys. Rev. Lett.102(20), 203904 (2009). [CrossRef] [PubMed]
  52. Y. D. Suh and R. Zenobi, “Improved Probes for Scanning near-Field Optical Microscopy,” Adv. Mater.12(15), 1139–1142 (2000). [CrossRef]
  53. S. Sun and G. J. Leggett, “Matching the Resolution of Electron Beam Lithography by Scanning near-Field Photolithography,” Nano Lett.4(8), 1381–1384 (2004). [CrossRef]
  54. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence,” Nano Lett.7(1), 28–33 (2007). [CrossRef] [PubMed]
  55. J.-S. Bouillard, S. Vilain, W. Dickson, and A. V. Zayats, “Hyperspectral Imaging with Scanning near-Field Optical Microscopy: Applications in Plasmonics,” Opt. Express18(16), 16513–16519 (2010). [CrossRef] [PubMed]
  56. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science326(5952), 550–553 (2009). [CrossRef] [PubMed]
  57. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-Hole Polarization Analyser for the Magnetic Vector of Light,” Nat. Commun.2, 451 (2011). [CrossRef] [PubMed]
  58. L. Novotny and C. Hafner, “Light Propagation in a Cylindrical Wave-Guide with a Complex, Metallic, Dielectric Function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994). [CrossRef] [PubMed]
  59. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
  60. E. Peytavit, J. F. Lampin, T. Akalin, and L. Desplanque, “Integrated Terahertz Tem Horn Antenna,” Electron. Lett.43(2), 73–75 (2007). [CrossRef]
  61. D. Dragoman and M. Dragoman, “Terahertz Fields and Applications,” Prog. Quantum Electron.28(1), 1–66 (2004). [CrossRef]
  62. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of Surface Polaritons in the Conical Structure,” J. Appl. Phys.87(8), 3785–3788 (2000). [CrossRef]
  63. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett.93(13), 137404 (2004). [CrossRef] [PubMed]
  64. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and Nonadiabatic Nanofocusing of Plasmons by Tapered Gap Plasmon Waveguides,” Appl. Phys. Lett.89(4), 041111 (2006). [CrossRef]
  65. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing Surface Plasmons for Nano-Scale Optical Focusing,” Opt. Express17(9), 7519–7524 (2009). [CrossRef] [PubMed]
  66. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of Mid-Infrared Energy with Tapered Transmission Lines,” Nat. Photonics5(5), 283–287 (2011). [CrossRef]
  67. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon Polariton Structure for Very Efficient Microscale-to-Nanoscale Interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  68. J. Conway, “Efficient Optical Coupling to the Nanoscale,” PhD. Thesis, University of California, Los Angeles (2006).
  69. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local Electric Field Enhancement During Nanofocusing of Plasmons by a Tapered Gap,” Phys. Rev. B75(3), 035431 (2007). [CrossRef]
  70. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009). [CrossRef] [PubMed]
  71. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly Efficient Interfacing of Guided Plasmons and Photons in Nanowires,” Nano Lett.9(11), 3756–3761 (2009). [CrossRef] [PubMed]
  72. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  73. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  74. W. H. Zhang, X. D. Cui, and O. J. F. Martin, “Local Field Enhancement of an Infinite Conical Metal Tip Illuminated by a Focused Beam,” J. Raman Spectrosc.40(10), 1338–1342 (2009). [CrossRef]
  75. T. Schmid, B. S. Yeo, G. Leong, J. Stadler, and R. Zenobi, “Performing Tip-Enhanced Raman Spectroscopy in Liquids,” J. Raman Spectrosc.40(10), 1392–1399 (2009). [CrossRef]
  76. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and Nitrides as Alternative Plasmonic Materials in the Optical Range [Invited],” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]
  77. T. W. Johnson, Z. J. Lapin, R. Beams, N. C. Lindquist, S. G. Rodrigo, L. Novotny, and S.-H. Oh, “Highly Reproducible near-Field Optical Imaging with Sub-20-Nm Resolution Based on Template-Stripped Gold Pyramids,” ACS Nano6(10), 9168–9174 (2012). [CrossRef] [PubMed]
  78. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross Resonant Optical Antenna,” Phys. Rev. Lett.102(25), 256801 (2009). [CrossRef] [PubMed]
  79. Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, “Manipulating Nanoscale Light Fields with the Asymmetric Bowtie Nano-Colorsorter,” Nano Lett.9(12), 4505–4509 (2009). [CrossRef] [PubMed]
  80. A. McLeod, A. Weber-Bargioni, Z. Zhang, S. Dhuey, B. Harteneck, J. B. Neaton, S. Cabrini, and P. J. Schuck, “Nonperturbative Visualization of Nanoscale Plasmonic Field Distributions Via Photon Localization Microscopy,” Phys. Rev. Lett.106(3), 037402 (2011). [CrossRef] [PubMed]
  81. H. Eghlidi, K. G. Lee, X. W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and Enhancement in Nanoantenna-Based Fluorescence Microscopy,” Nano Lett.9(12), 4007–4011 (2009). [CrossRef] [PubMed]
  82. P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-Fast Nano-Optics,” Laser Photon. Rev.3(6), 483–507 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited