OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 5 — Jun. 6, 2013

The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy

Anand Pratap Singh, Jan Wolfgang Krieger, Jan Buchholz, Edoardo Charbon, Jörg Langowski, and Thorsten Wohland  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8652-8668 (2013)
http://dx.doi.org/10.1364/OE.21.008652


View Full Text Article

Enhanced HTML    Acrobat PDF (1530 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower.

© 2013 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.1490) Detectors : Cameras
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Detectors

History
Original Manuscript: February 4, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 20, 2013
Published: April 2, 2013

Virtual Issues
Vol. 8, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Anand Pratap Singh, Jan Wolfgang Krieger, Jan Buchholz, Edoardo Charbon, Jörg Langowski, and Thorsten Wohland, "The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy," Opt. Express 21, 8652-8668 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-7-8652


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Berland, P. T. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophy. J.68, 694–701 (1995). [CrossRef]
  2. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophy. J.77, 2251–2265 (1999). [CrossRef]
  3. R. Brock, G. Vàmosi, G. Vereb, and T. M. Jovin, “Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy,” Proc. Natl. Acad. Sci. U.S.A.96, 10123–10128 (1999). [CrossRef] [PubMed]
  4. M. Wachsmuth, W. Waldeck, and J. Langowski, “Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy,” J. Mol. Biol.298, 677–689 (2000). [CrossRef] [PubMed]
  5. R. H. Köhler, P. Schwille, W. W. Webb, and M. R. Hanson, “Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy,” J. Cell Sci.113, 3921–3930 (2000).
  6. X. Pan, H. Yu, X. Shi, V. Korzh, and T. Wohland, “Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy,” J. Biomed. Opt.12, 014034 (2007). [CrossRef] [PubMed]
  7. X. Shi, Y. H. Foo, T. Sudhaharan, S. W. Chong, V. Korzh, S. Ahmed, and T. Wohland, “Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy,” Biophy. J.97, 678–786 (2009). [CrossRef]
  8. X. Shi, L. S. Teo, X. Pan, S. W. Chong, R. Kraut, V. Korzh, and T. Wohland, “Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy,” Dev. Dyn.238, 3156–3167 (2009). [CrossRef] [PubMed]
  9. D. Magde, E. Elson, W. Webb, W. W. Magde, Douglas, and Elliot Elson, “Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy,” Phy. Rev. Lett.29, 705–708 (1972). [CrossRef]
  10. R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J.22, 169–175 (1993). [CrossRef]
  11. H. Blom, M. Johansson, A. S. Hedman, L. Lundberg, A. Hanning, S. Hård, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2 × 2 fan-out element,” Appl. Opt.41, 3336 (2002). [CrossRef] [PubMed]
  12. M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P.-A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt.9, 913–921 (2004). [CrossRef] [PubMed]
  13. T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: A new tool for accurate and absolute diffusion measurements,” ChemPhysChem.8, 433–443 (2007). [CrossRef] [PubMed]
  14. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: Highly parallel fluorescence correlation spectroscopy,” Biophy. J.96, 5050–5059 (2009). [CrossRef]
  15. N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, and J. Langowski, “Mapping EGFP oligomer mobility in living cell nuclei,” PLoS ONE4, e5041 (2009). [CrossRef]
  16. T. Wilson, R. Juškaitis, M. A. A. Neil, and M. Kozubek, “Confocal microscopy by aperture correlation,” Opt.Lett.21, 1879–1881 (1996). [CrossRef] [PubMed]
  17. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. chem.78, 3444–3451 (2006). [CrossRef] [PubMed]
  18. M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express14, 5013 (2006). [CrossRef] [PubMed]
  19. M. K. Landsberg, G. Herbomel, I. Wang, J. Derouard, C. Vourc’h, Y. Usson, C. Souchier, and A. Delon, “Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy,” Biophy. J.103, 1110–1119 (2012). [CrossRef]
  20. D. R. Sisan, R. Arevalo, C. Graves, R. McAllister, and J. S. Urbach, “Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope,” Biophy. J.91, 4241–4252 (2006). [CrossRef]
  21. P. W. Wiseman, C. M. Brown, D. J. Webb, B. Hebert, N. L. Johnson, J. a. Squier, M. H. Ellisman, and a. F. Horwitz, “Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy,” J. Cell Sci.117, 5521–5534 (2004). [CrossRef] [PubMed]
  22. B. Hebert, S. Costantino, and P. W. P. Wiseman, “Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells,” Biophy. J.88, 3601–3614 (2005). [CrossRef]
  23. C. M. Brown, B. Hebert, D. L. Kolin, J. Zareno, L. Whitmore, A. R. Horwitz, and P. W. Wiseman, “Probing the integrin-actin linkage using high-resolution protein velocity mapping,” J. Cell Sci.119, 5204–5214 (2006). [CrossRef] [PubMed]
  24. M. Digman, C. Brown, and P. Sengupta, “Measuring fast dynamics in solutions and cells with a laser scanning microscope,” Biophy. J.891317–1327 (2005). [CrossRef]
  25. S. C. P. Norris, J. Humpolíčková, E. Amler, M. Huranová, M. Buzgo, R. Machán, D. Lukáš, and M. Hof, “Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds,” Acta Biomater.7, 4195–4203 (2011). [CrossRef] [PubMed]
  26. R. A. Colyer, G. Scalia, I. Rech, A. Gulinatti, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array,” Biomed. Opt. Express1, 1408–1431 (2010). [CrossRef]
  27. R. A. Colyer, G. Scalia, F. a. Villa, F. Guerrieri, S. Tisa, F. Zappa, S. Cova, S. Weiss, and X. Michalet, “Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD,” in “Proc. SPIE,” vol. 7905790503–1 (2011).
  28. J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophy. J.95, 5385–5398 (2008). [CrossRef]
  29. D. Oh, A. Zidovska, Y. Xu, and D. J. Needleman, “Development of time-integrated multipoint moment analysis for spatially resolved fluctuation spectroscopy with high time resolution,” Biophy. J.101, 1546–1554 (2011). [CrossRef]
  30. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem.79, 4463–4470 (2007). [CrossRef] [PubMed]
  31. J. Sankaran, M. Manna, L. Guo, R. Kraut, and T. Wohland, “Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy,” Biophy. J.97, 2630–2639 (2009). [CrossRef]
  32. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, and F. D. Bene, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305, 1007–1009 (2004). [CrossRef] [PubMed]
  33. K. Greger, J. Swoger, and E. H. K. Stelzer, “Basic building units and properties of a fluorescence single plane illumination microscope,” Rev. Sci. Instrum.78, 023705 (2007). [CrossRef] [PubMed]
  34. T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express18, 1317–1327 (2010). [CrossRef]
  35. J. Capoulade, M. Wachsmuth, L. Hufnagel, and M. Knop, “Quantitative fluorescence imaging of protein diffusion and interaction in living cells,” Nat. Biotechnol.29, 835–839 (2011). [CrossRef] [PubMed]
  36. L. C. Hwang and T. Wohland, “Recent advances in fluorescence cross-correlation spectroscopy,” Cell Bio-chem. Biophys.49, 1–13 (2007). [CrossRef]
  37. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express20, 21805–21814 (2012). [CrossRef] [PubMed]
  38. F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, K.-B. Im, and M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express18, 23818–23828 (2010). [CrossRef] [PubMed]
  39. J. Sankaran, X. Shi, L. Y. Ho, E. H. K. Stelzer, and T. Wohland, “ImFCS: a software for imaging FCS data analysis and visualization,” Opt. Express18, 25468–25481 (2010). [CrossRef] [PubMed]
  40. J. Buchholz, J. W. Krieger, G. Mocsár, B. Kreith, E. Charbon, G. Vámosi, U. Kebschull, and J. Langowski, “FPGA implementation of a 32×32 autocorrelator array for analysis of fast image series,” Opt. Express20, 17767 (2012). [CrossRef] [PubMed]
  41. C. Jakob, A. Schwarzbacher, B. Hoppe, and R. Peters, “The development of a digital multichannel correlator system for light scattering experiments,” in “IET Irish Signals and Systems Conference (ISSC 2006),” vol. 2006 (IEEE, 2006), vol. 2006, pp. 99–103. [CrossRef]
  42. C. Jakob, a. T. Schwarzbacher, B. Hoppe, and R. Peters, “A FPGA optimised digital real-time mutichannel correlator architecture,” in “10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007),” (IEEE, 2007), pp. 35–42. [CrossRef]
  43. G. Mocsár, B. Kreith, J. Buchholz, J. W. Krieger, J. Langowski, and G. Vámosi, “Note: multiplexed multiple-tau auto- and cross-correlators on a single field programmable gate array,” Rev. Sci. Instrum.83, 046101 (2012). [CrossRef] [PubMed]
  44. S. Kalinin, R. Kühnemuth, H. Vardanyan, and C. a. M. Seidel, “Note: A 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy,” Rev. Sci. Instrum.83, 096105 (2012). [CrossRef] [PubMed]
  45. X. Michalet, O. H. W. Siegmund, J. V. Vallerga, P. Jelinsky, J. E. Millaud, and S. Weiss, “Detectors for single-molecule fluorescence imaging and spectroscopy,” J. Mod. Optics54, 239–281 (2007). [CrossRef]
  46. L. Carrara, C. Niclass, N. Scheidegger, H. Shea, and E. Charbon, “A gamma, x-ray and high energy proton radiation-tolerant CIS for space applications” in “IEEE International Solid-State Circuits Conference - Digest of Technical Papers,” (IEEE, 2009), pp. 40–41.
  47. J. W. Krieger and J. Langowski, “Quickfit 3.0: A data evaluation application for biophysics,” http://www.dkfz.de/Macromol/quickfit/(2013 ) .
  48. N. L. Thompson, Fluorescence correlation spectroscopy (Springer, 2002), pp. 337–378.
  49. N. Bag, J. Sankaran, A. Paul, R. S. Kraut, and T. Wohland, “Calibration and limits of camera-based fluorescence correlation spectroscopy: a supported lipid bilayer study,” ChemPhysChem.13, 2784–2794 (2012). [CrossRef] [PubMed]
  50. X. Pan, W. Foo, W. Lim, M. H. Y. Fok, P. Liu, H. Yu, I. Maruyama, and T. Wohland, “Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements,” Rev. Sci. Instrum.78, 053711 (2007). [CrossRef] [PubMed]
  51. M. Wachsmuth, “Fluoreszenzfluktuationsmikroskopie: Entwicklung eines prototyps, theorie und messung der beweglichkeit von biomolekülen im zellkern: Doctoral dissetation,” Ruprecht-Karls-Universität,Heidelberg. (2001).
  52. P. Kapusta, “Absolute diffusion coefficients: compilation of reference data for FCS calibration,” Pico-Quant pp. 0–1 (2010).
  53. Z. Petrásek, P. Schwille, and Z. Petrášek, “Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy,” Biophy. J.94, 1437–1448 (2008). [CrossRef]
  54. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7, 637–642 (2010). [CrossRef] [PubMed]
  55. D. Blair and E. Dufresne, “The matlab particle tracking code,” http://physics.georgetown.edu/matlab/ .
  56. S. M. Hashmi, M. Loewenberg, and E. R. Dufresne, “Spatially extended FCS for visualizing and quantifying high-speed multiphase flows in microchannels,”Opt. Express15, 6528–6533 (2007). [CrossRef] [PubMed]
  57. A. E. Kamholz, B. H. Weigl, B. a. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem.71, 5340–5347 (1999). [CrossRef] [PubMed]
  58. D. Broboana, C. Mihai, Balan, T. Wohland, and C. Balan, “Investigations of the unsteady diffusion process in microchannels,” Chem. Eng. Sci.66, 1962–1972 (2011). [CrossRef]
  59. H. Y. Gan, Y. C. Lam, N. T. Nguyen, K. C. Tam, and C. Yang, “Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number,” Microfluid. Nanofluid.3, 101–108 (2006). [CrossRef]
  60. H. C. Berg, Random walks in biology (Princeton University Press, 1993).
  61. D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers13, 29–61 (1974). [CrossRef] [PubMed]
  62. S. Ivanchenko and D. C Lamb, Fluorescence correlation spectroscopy: Principles and developments (Springer, 2011), pp. 1–30.
  63. D. Koppel, “Statistical accuracy in fluorescence correlation spectroscopy,” Phys. Rev. A10, 1938–1945 (1974). [CrossRef]
  64. P. Kapusta, M. Wahl, A. Benda, M. Hof, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy,” J. Fluoresc.17, 43–48 (2007). [CrossRef]
  65. K. Starchev, J. Zhang, and J. Buffle, “Applications of fluorescence correlation spectroscopy – Particle size effect,” J. Colloid Interface Sci.203, 189–196 (1998). [CrossRef]
  66. Y. Reibel, M. Jung, M. Bouhifd, B. Cunin, and C. Draman, “CCD or CMOS camera noise characterisation,” Eur. Phys. J-Appl. Phys.21, 75–80 (2002). [CrossRef]
  67. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A.106, 22287–22292 (2009). [CrossRef] [PubMed]
  68. S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-Talisman, D. T. Burnette, J. Lippincott-Schwartz, G. E. Jones, and R. Heintzmann, “Bayesian localization microscopy reveals nanoscale podosome dynamics,” Nat. Methods9, 195–200 (2012). [CrossRef]
  69. C. G. Coates, “Back-illuminated electron multiplying technology: the world’s most sensitive CCD for ultralow-light microscopy,” in “Proceedings of SPIE,” vol. 4962 (SPIE, 2003), pp. 319–328. [CrossRef]
  70. C. G. Coates, D. J. Denvir, N. G. McHale, K. D. Thornbury, and M. A. Hollywood, “Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution,” J. Biomed. Opt.9, 1244–1252 (2004). [CrossRef] [PubMed]
  71. S. Iwabuchi, Y. Maruyama, Y. Ohgishi, M. Muramatsu, N. Karasawa, and T. Hirayama, “A back-illuminated high-sensitivity small-pixel color CMOS image sensor with flexible layout of metal wiring,” in “IEEE International Solid State Circuits Conference,” (IEEE, 2006), pp. 1171–1178.
  72. T. Joy, S. Pyo, S. Park, C. Choi, C. Palsule, H. Han, C. Feng, S. Lee, J. McKee, P. Altice, C. Hong, C. Boemler, J. Hynecek, M. Louie, J. Lee, D. Kim, H. Haddad, and B. Pain, “Development of a production-ready, back-illuminated CMOS image sensor with small pixels,” in “IEEE International Electron Devices Meeting,” (IEEE, 2007), pp. 1007–1010.
  73. E. Randone, G. Martini, M. Fathi, and S. Donati, “SPAD-array photoresponse is increased by a factor 35 by use of a microlens array concentrator,” in “IEEE LEOS Annual Meeting Conference Proceedings,” vol. 46 (IEEE, 2009), pp. 324–325.
  74. E. Charbon and S. Donati, “SPAD sensors come of age,” Optics & Photonics News21, 35–41 (2010). [CrossRef]
  75. M. J. Culbertson, J. T. B. Williams, W. W. L. Cheng, D. A. Stults, E. R. Wiebracht, J. J. Kasianowicz, and D. L. Burden, “Numerical fluorescence correlation spectroscopy for the analysis of molecular dynamics under nonstandard conditions,” Anal. Chem.79, 4031–4039 (2007). [CrossRef] [PubMed]
  76. H. C. Burstyn and J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A27, 1071–1085 (1983). [CrossRef]
  77. http://staff.science.nus.edu.sg/~chmwt/publications/Singh%20AP%202013%202D%20array_supplementary.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited